Nanotechnology Research Laboratories

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 1126 - 1150 of 1700

 
Supported equally by the Russell Berrie Foundation, the Government of Israel through TELEM, and Technion, RBNI aims at positioning the Technion and the State of Israel at the forefront of global nanotechnology research and development.
The following Technion academic units participate in this interdisciplinary program: Mechanical Engineering, Electrical Engineering, Chemical Engineering, Biotechnology and Food Engineering, Physics, Chemistry, Biology, Medicine, Materials Engineering and Bio-medical Engineering.
Major interests of the group are: electrospinning of functionalized nanofibers; investigation of the mechanical properties of nanostructures;fabrication of nano scaffolds/membrane; nanofluidics.
The following Technion academic units participate in this interdisciplinary program: Mechanical Engineering, Electrical Engineering, Chemical Engineering, Biotechnology and Food Engineering, Physics, Chemistry, Biology, Medicine, Materials Engineering and Bio-medical Engineering.
Nanoelectronics- characterization and fabrication.
TEKNIKER is a technological center set up as a private not-for-profit foundation to help the industrial sector to increase its innovative capacity by means of generating and applying technology and knowledge in order to be more competitive. Expertise includes nanoimprint lithography for fabric engineering, vapor-phase deposition coatings, and nanostructuring of coatings.
Tel Aviv University has launched the first interdisciplinary university research institute for nanoscience and nanotechnology in Israel, with a multimillion investment. Over 40 groups actively conduct leading research in electronics, physics, chemistry, biotech and medicine, developing more than 85 specific and interdisciplinary projects.
The main focus of the group is single-molecule genomics but they have activity also in development of new optical detection schemes and novel imaging techniques. They explore genomes utilizing tools and reagents from the realm of nano-technology. The team try learning new things about these systems by zooming in on individuals - single cells, single chromosomes and single molecules.
Combining the nano research at A&M.
The group's research spans diverse fields, including materials science, chemistry, stem cells biology and additive biomanufacturing. Specifically, the lab is developing biomimetic nanomaterials with native interface tissue-like gradient in physical and chemical properties, integrating advanced micro- and nano- fabrication technologies to mimic native interface tissue architecture and directing stem cell behavior to obtain regionalized tissue constructs in vitro and in vivo.
The PNC Lab is the research group of Professor Jaime Grunlan and is interested in nanostructure and microstructure of particle-polymer systems.
The Nanomaterials Application Center coordinates, facilitates, and participates in nanoscience and nanoengineering applications and expedites commercialization of inventions.
MIT's Center for Bits and Atoms is an ambitious interdisciplinary initiative that is looking beyond the end of the Digital Revolution to ask how a functional description of a system can be embodied in, and abstracted from, a physical form.
THREADMILL is a new Marie Curie Research Training Network (RTN) devoted to cross-disciplinary training and research at the interface between Supramolecular Chemistry, Electrical Engineering, Physics, and Nanoscience.
The lab's main interest lies in the studies of physical and chemical phenomena that take place in nanometer-scale regions as well as the applications of such phenomena in photo-electronic devices.
Research activities at the Ohno Lab cover the areas of preparation, characterization and application of compound semiconductor quantum structures for high speed devices.
The group has been developing the methods for explicating the determinant factors of physical properties of nano-particles, thin film materials, and materials used for micro structures.
The center consists of several individual research groups and labs that deal with nano-related research.
The Samukawa Lab conducts research on ways to generate charged particles (positive and negative ions, electrons) and neutral particles (atoms/molecules) and associated acceleration technologies (including beam technologies), as well as research on particle flow and the latest bio-nano processes.
MNTC encompasses all fields from molecular level mechanism analysis to medical application. Specifically, MNTC's research focuses on functional ultra-thin polymer films (films with thickness of under 100 nm). The cooperative medical, physics, and engineering organization utilizes the features unique to the 'structure of the plane' created when polymers are formed into ultra-thin films, and applies these to medical technologies.
In the lab of Cagdas Allahverdi, the group is producing II-VI and V-VI group semiconductors whose average sizes are below 100 nm. Their aim is to create applications using these nanomaterials in the future.
An independent, nonprofit organization that serves clients in industry, government, and academia. One Research area is Nanoporous Materials: Modeling and Characterization.
This laboratory is focuses on the dynamics and kinetics of interacting biomolecules, the mechanics of protein imported to mitochondria membranes, the kinetics of molecular motors under external strain and the nanomechanical action at ribosomal complexes during translation.
For their projects, the group designs miniaturized nano-enabled sensors for the health and the environment; low power circuits that can operate at a fraction of a volt; imagers that can see the invisible terahertz band and even detect fluorescence (lifetime) that vanish in less than a nanosecond.
Work on optical sensing arrays