Nanotechnology Research Laboratories

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 1426 - 1450 of 1701

 
MassNanoTech, the research institute for nanotechnology at the University of Massachusetts Amherst, coordinates research on nanoscale materials, devices and systems, collaborates with industry, advances nanotechnology commercialization, educates students, and fosters outreach activities.
The research of Rotello's group at the University of Massachusetts focuses on the area of supramolecular chemistry: the study and application of non-covalent interactions. These interactions include hydrogen bonding, aromatic stacking and other electrostatic attractions and repulsions. We are currently employing these concepts of molecular recognition to explore a wide range of important questions in areas of biology to materials chemistry.
CHN focuses on generating knowledge and innovations in the area of template-directed assembly at high-rate, high yield nanomanufacturing. CHN represents a unique center structure, with three universities -- UMass Lowell, Northeastern University, and University of New Hampshire -- forming an equal partnership.
Mission: To lead the research effort in high throughput, environmentally-friendly processing of polymeric materials, devices, and structures and integration of other materials and devices with polymers with nanoscale control; To serve as a focal point and resource for transfer of nanoscience and nanotechnology to industrial application; To facilitate educational and outreach efforts related to nanotechnology and specifically nanomanufacturing.
The mission of the Keck Nanostructures Laboratory is to provide access to material characterization equipment, technical support, training and consultation, as well as to perform a range of services for users in the area of Atomic Force Microscopy (AFM), Small Angle X-ray Scattering (SAXS), Variable Angle Spectrocopic Elliposmetry (VASE) and Optical Microscopy.
One area of the department is dedicated to nano- and bioprocess engineering.
Research activities focus on, among other things, surface modification of particles, biosensors, colloidal crystals and drug delivery systems.
Current areas of research include: quantum dots in LEDs and solar cells and biolabelling, plasmonics, energy transfer mechanisms in nanoscale systems, nanomechanics, smart functional materials, nanofabrication techniques and nanocrystal doping.
The Kopelman Laboratory at the University of Michigan is working on Autonomous Nano-Devices for Biomedical Applications
Research in the Glotzer group focuses on understanding why and how ordered structures emerge in otherwise disordered soft materials and nanoscale systems -- and how to design and control novel, functional structures from nanoscale building blocks using unconventional methods. Our tools for discovery include molecular, mesoscale, and multiscale computer simulations.
The LNF is available, on a fee basis, for use by research groups from government, industry and universities. Equipment and processes are available for research on silicon integrated circuits, MEMS, III-V compound devices, organic devices and nanoimprint technology.
The group's research deals with nanostructures and nanostructured materials. They seek to expand the science of how to synthesize these materials and engineer their fundamental properties; to create new technology to realize the related chemical, mechanical, and thermal assembly processes; and to pioneer applications which harness the unique properties of nanostructures at small and large scales.
The laboratory focuses on understanding cell function through the development and use of novel micro-, nano-, and molecular-scale technologies.
Researching single molecule biophysics.
Dealing with nanoscale thermal transport.
The MNF is one of the leading centers worldwide on micro electromechanical systems (MEMS) and microsystems. It provides facilities and processes for the integration of Si integrated circuits and MEMS with nanotechnology, with applications in biology, medical systems, chemistry, and environmental monitoring.
The Center for Nanostructure Applications is a focal point for nanotechnology at the University of Minnesota. It's a place where you will be able to find information about faculty engaged in University of Minnesota-specific information such as nano-related research and workshops, as well as announcements on nano related news, calls for proposals, conferences, and other regional and national events.
Funded through the NSF Integrative Graduate Education and Traineeship (IGERT) program
The Center for Spintronic Materials, Interfaces, and Novel Architectures (C-SPIN) is a multi-university research center that will bring together top researchers from across the nation to develop technologies for spin-based computing and memory systems. Unlike today's computers, which function on the basis of electrical charges moving across wires, the emerging spin-based computing systems will process and store information through spin, a fundamental property of electrons. Spin-based logic and memory have the potential to create computers that are smaller, faster and more energy-efficient than conventional charge-based systems. Research conducted by C-SPIN will also have an impact beyond the world of computer science through advances in materials science, chemistry, circuit design, nanotechnology, and many other fields.
An interdisciplinary facility that supports faculty and industrial research within the Institute of Technology to support education, research and industrial collaboration in microelectronics and other related research involving nanofabrication.
PTL is one of the leading centers of small particle research in the U.S.
Porous solids, nanocomposites, self-assembled frameworks.
The University of Missouri - International Institute of Nano and Molecular Medicine is a campus wide research center dedicated to the discovery and application of fundamental and translational medical science based upon previously unexplored chemistry combined with nanotechnology and the biosciences.
Focuses on advanced molecule/materials programs.
The research activities of the group deal with the structural, electronic, and optical properties of novel organic materials, such as functional nanostructures, with promising characteristics in the field of electronics, photonics, and information technology.