Nanotechnology Databases

Comprehensive databases for nanomaterials, events, products,
companies, research labs, degree programs and publications

 

Nanotechnology Research Laboratories

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 1426 - 1450 of 2039

 
In the lab of Cagdas Allahverdi, the group is producing II-VI and V-VI group semiconductors whose average sizes are below 100 nm. Their aim is to create applications using these nanomaterials in the future.
An independent, nonprofit organization that serves clients in industry, government, and academia. One Research area is Nanoporous Materials: Modeling and Characterization.
Research in the group focuses on production, characterisation, theory and electronic applications of organic polymers, nanotubes and polymer nanotube composites.
This laboratory is focuses on the dynamics and kinetics of interacting biomolecules, the mechanics of protein imported to mitochondria membranes, the kinetics of molecular motors under external strain and the nanomechanical action at ribosomal complexes during translation.
This is a four-year degree programme, run jointly by the Schools of Chemistry and Physics at Trinity College Dublin. Students will gain a deep and lasting understanding of the science of advanced materials that underpins the nano revolution. Some laboratory training is provided in CRANN, the leading institute for nanoscience in Ireland.
The scientific mission of the CNMM is to explore new application areas of mechanics at the micro and nano scales, in a highly multidisciplinary environment.
Work on optical sensing arrays
The key areas in micro/nanoelectronics research being pursued at Tyndall include: The fabrication and characterisation of novel nanoscale device structures on silicon;The heterogeneous integration of nanoscale materials into practical working devices of interest to the electronics industry; The integration of novel functional materials onto active silicon devices, designed to permit the delivery of added functionality for systems-on-chip (SoC) applications including on-chip power, sensing and actuation.
Research areas are: Nanoimprint Lithography; Photonic Crystals; Electron-Phonon Interaction; Nanotubes
The center on Functional Engineered Nano Architectonics (FENA) aims to create and investigate new nano-engineered functional materials and devices, and novel structural and computational architectures for new information processing systems beyond the limits of conventional CMOS technology.
The Center for Cell Control is working on an unprecedented approach to first utilize systems control, with therapeutic intent, to determine the parameters for guiding the cell to a directed phenotype/genotype which will then be followed by in depth study, using nanoscale modalities, of the path by which this desired state is achieved. This approach will enable engineering systems that can be applied towards the regulation of a spectrum of cellular functions, such as cancer eradication, controlling viral infection onset, and stem cell differentiation.
The Nanoelectronics Research Facility is part of the Elecetrical Engineering Department at the University of California, Los Angeles.
The Photonics Laboratory at UCLA performs multi-disciplinary research and development in the fields of silicon photonics, microwave photonics, and biophotonics for biomedical and defense applications. The Lab has two complementary missions. The first is to solve critical problems faced by defense, commercial industries, and medicine through innovative approaches that enable revolutionary advances in devices or systems. The second and equally important mission is to produce creative and highly skilled scientists and engineers who will be the driving force for technological innovation in the 21st century.
Research interests include Signal Transduction, Protein Lipidation and Prenyltransferase Inhibitors, Nanodelivery of Anticancer Drugs.
Research in the group focuses around two intertwined goals. These are first, to create complex materials with nanoscale periodicity using self-organization, and second, to produce new physical properties because of that nanoscale architecture.
Vaults are components of cells that were first described in 1986. Because the particle is abundant in all cells of higher organisms and highly conserved throughout evolution, it is likely that the function of the vault is important to life. This website is designed for the educated non-scientist. It summarizes the present state of knowlege of this fascinating particle.
The Western Institute of Nanoelectronics (WIN), a National Institute of Excellence, has been organized to build on the best interdisciplinary talents in the field of nanoelectronics in the world. WIN's mission is to explore and develop advanced research devices, circuits and nanosystems with performance beyond conventional scaled CMOS.
A portfolio partnership between the Zheludev Group and the Baumberg Group at the University of Southampton.
The main purpose of our research center is to enhance the Ion Beam Analysis (IBA) and Ion Beam Modification of Materials (IBMM) techniques for their use in a broad range of fields, from Materials Science to Archaeometry or Environmental Science, areas of scientific research on which IBA techniques have already proven their power.
The research developed in Martin's group is mainly focussed to Carbon Nanostructures (Fullerenes and Carbon Nanotubes) as materials for the preparation of Photo- and Electroactive Organic Molecular Systems.
The group's research focuses on quantum properties of ultra-small semiconductor and organic structures with the aim to investigate theoretically new, unusual and unexpected phenomena. In particular they are interested in structures that operate in the quantum regime where several exciting and still unresolved puzzles await their discovery.
Research activities in the field of Surface engineering for high temperature: Study of corrosion behaviour of protective coatings at high temperature. Within this field the national and international projects that focus in developing new protective coating for the power generation and aerospace industry as well as the study of corrosion behaviour in very aggressive environments.
The Interuniversitary Master in Nanosciencie and Molecular Nanotechnology does not have precedents nationally since he discusses the aspects placed in the intersection of one science at his peak as he is Nanosciencie with the more traditional molecular systems . It influences, therefore, scientific areas of present-day interest like Molecular Electronics , Molecular Magnetism , the Supramolecular Chemistry , Physics at Superficies, or the Molecular Materials Science.
A research group in nanochemistry and organic synthesis in the Department of Organic Chemistry.
UNAM has several groups that develop research projects in the areas of Nanoscience and Nanotechnology. These research groups have organized themselves to form REGINA.
 
 
 
left arrowBack to Nanotechnology Links Directory