Nanotechnology Databases

Comprehensive databases for nanomaterials, events, products,
companies, research labs, degree programs and publications

 

Nanotechnology Research – Universities

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 226 - 250 of 536 for university labs starting with U:

 
The Masters in Nanoscience and Nanotechnology teaches you the skills desired by modern industry for scientists and engineers doing research, development and production in nanoscience and nanofabrication. This multidisciplinary programme will complement your background in electronics, materials science, or physics. Prestigious Scottish Funding Council Awards are available to high calibre applicants for this programme.
The Nanoelectronics Research Centre provides a focus for diverse research activities within the University of Glasgow linked by a common interest in Nanoelectronics and Nanofabrication.
The group works in the area of materials physics investigating functional and structural materials with benefits as diverse as improved fuel economy in cars and more powerful computers and mobile phones. Their expertise in Nanocharacterisation, Nanomagnetics and Quantum Transport provides insight into atomic scale phenomena. They develop instrumentation techniques and understanding in these areas.
The lab carries out research in the underlying science of optical processes in semiconductor nanostructures, i.e., device-relevant science.
The group's research program is devoted to the investigation of the physical concepts of a subwavelength light technology (Nano-Optics), mainly based on surface plasmon excitations in metal nanostructures.
The group's interdisciplinary research programmes are currently concerned with projects investigating the atomistic modelling of the physical, chemical and morphological properties and dynamic behaviour of different types of nano-structures in condensed matter physics, materials science, macro-molecular and colloidal chemistry, molecular solids, nano-technology and bio- and self-replicating systems.
The research program of the Feringa group at the University of Groningen in the Netherlands is focussed on synthetic organic chemistry with a major part of the research is directed towards nanotechnology and novel functional materials, like molecular switches and motors.
The Top Master programme in Nanoscience aims to train the cutting-edge scientists of the future. This is achieved by offering a challenging interdisciplinary programme and by admitting only very talented and motivated students. The courses are taught by top international scientists, and a large part of the programme consists of actually conducting scientific research, alongside world-class scientists, using the state-of-the-art facilities of the Zernike Institute.
Within the NanoLab NL program, the infrastructure in Groningen is designed to function as the Dutch center for bottom-up (bio)molecular electronics and functional (bio)molecular nanostructures, and for the development of nanostructures based on supramolecular interactions and molecular lithography.
The classic materials triangle concerns an integrative approach in the three aspects of structure, property and chemical composition. The Zernike Institute for Advanced Materials adds an extra dimension to this traditional view by an unconventional linkage to the field of biomolecular sciences, which includes the design aspects as well.
The Suresh lab at the School of Engineering is focused on studying the nanoscale aspects of biosystems through bio-instrumentation and bio-imaging. The group fosters interdisciplinary approach to research in studies covering diverse topics of food, biological and agricultural systems.
At Guelph we have created a unique approach to nanoscience studies. Fundamental science course are combined with specially designed courses in nanoscience covering material that would previously only be found in graduate programs.
Their research activities are concentrated on nanometer-scale science and technology based on scanning probe methods (SPM). In particular, we investigate the fundamental relationship between nanostructure and nanophysical properties.
The Laboratory of Nano and Quantum Engineering is a research center of the University of Hannover, focussed on research in the field of nanotechnology.
Research fields include electron beam and scanning probe lithography, tunnel spectroscopy and transport experiments in Si/SiGe heterostructures.
Cluster Research Group in the department of physics at the University of Hawaii
The group of Christoph Cremer focuses on the biophysics/analysis of the nuclear nanostructure, mainly of mamalian cell nuclei. For this, a combination of biocomputing simulations and experimental approaches is used.
The primary goal of INE is to develop breakthrough technologies in energy storage and generation (solar and wind) by developing organic based nano-photonic, nano-phononic and nanomechanical composites that are manufactured by means of sophisticated material control mechanisms. This is achieved through the use of a variety of techniques including electron and optical microscopy, spectroscopy, nanofabrication and self-assembly. The ability to design, assemble and engineer nanostructures will rely predominately on understanding and controlling the interactions between the nanostructures.
A dedicated laboratory offers nanotechnology services.
This theme links established Hull research in liquid crystals, surfactants, colloids and organophotonics which all involve materials which structure or self-assemble over nanometre lengths.
Theoretical and Computational Biophysics Group center on the structure and function of supramolecular systems in the living cell, and on the development of new algorithms and efficient computing tools for structural biology.
Magnetism of nanostructures, nanocomposites as recording media, computational studies of magnetic nanostructures.
The group is focused on the study of energy transfer in semiconductor nanocrystals (NCs). They are interested in (1) constructing novel semiconductor nanocrystal material systems to engineer energy transfer processes, (2) developing imaging agents based on their NC constructs and (3) bandgap engineering of multilayered nanocrystalline materials.
The general goal of the Molecular & Electronic Nanostructures (M&ENS) Research Initiative at the Beckman Institute is to develop a fundamental understanding of chemical and physical processes involving structures on the nanometer scale.
CNST envisions seamless integration of the research from materials to devices to systems and applications
 
 
left arrowBack to Nanotechnology Links Directory