Nanotechnology Research Laboratories

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 51 - 75 of 1860

 
The Australian Centre for NanoMedicine combines Medicine, Science and Engineering to deliver therapeutic solutions to research problems in medicine. Through a commitment to research, education, knowledge transfer and commercialisation, ACN is dedicated to the prevention, diagnostics and curing of diseases.
The Centre for Quantum Computer Technology is an Australian multi-university collaboration undertaking research on the fundamental physics and technology of building, at the atomic level, a solid state quantum computer in silicon together with other high potential implementations.
The Australian Institute for Nanoscale Science and Technology (AINST) is the University of Sydney's latest step in the creation of flexible, interdisciplinary institutes that are devoted to bringing the best people and infrastructure together in the support of frontier research.
The AMMRF is a national grid of equipment, instrumentation and expertise in microscopy, microanalysis, electron and x-ray diffraction and spectroscopy providing nanostructural characterisation capability and services to all areas of nanotechnology and biotechnology research.
Established under the National Collaborative Research Infrastructure Strategy, the ANFF links 8 university-based nodes to provide researchers and industry with access to state-of-the-art fabrication facilities. The capability provided by ANFF enables users to process hard materials (metals, composites and ceramics) and soft materials (polymers and polymer-biological moieties) and transform these into structures that have application in sensors, medical devices, nanophotonics and nanoelectronics.
The department carries out a significant research body in nanotechnology and nanosciences.
Extensive research into the design, growth and fabrication of semiconductor and optical devices on the nanometer scale using techniques ranging from MOCVD growth to ion beam processing. Such devices by virtue of their scale, exploit quantum effects to enhance their performance. A large part of this research program focuses on quantum well lasers and detectors of importance to the telecommunications industry. They also research the nanoscale modification of bulk materials such as nanocrystals within semiconductors induced by ion irradiation.
At the Australian National University (ANU), carbon nanotubes, Boron Nitride (BN) nanotubes, nanoparticles, nanowires and other nanomaterials have been produced by using a high-energy ball milling and annealing method, which was developed by the group in 1998.
The Australian Research Council (ARC) Center of Excellence for Nanoscale BioPhotonics crosses the boundaries of biology, lasers and nanoscience, using light-based sensors to probe molecular processes within living systems.
Dedicated to substantially enhancing Australia's research outcomes in this important field by promoting effective collaborations, exposing researchers to alternative and complementary approaches from other fields, encouraging forums for postgraduate students and early career researchers, increasing nanotechnology infrastructure, enhancing awareness of existing infrastructure, and promoting international links.
Primary goal of the center is to transfer the technology of validated theory and computational tools from the academic-based Center to the practitioners' development environment which is nanotechnology-based industry.
This course teaches numerate graduates knowledge and skills in the field of nanotechnology and microfabrication. The course takes an immersive approach to learning both the principles and practices of nanotechnology and microfabrication with much of the material based around examples and practical exercises. Students completing this course will have a firm grasp of the current practices and directions in this exciting area and will have the knowledge and skills to enable them to design and build microscale devices.
BICAMN includes focus areas in 'Nanodevices' and in 'Nanomaterials' that explore the basic science of nanoscale magnetism and optics and the structural details of novel nanoparticles and nanoscale thin films.
The mission of the Institute is to play a dominant role in the materials science and technology innovation chain, first of all in the field of laser technology, metal technology and simulation, polymer technology and nanotechnology.
BCMaterials is an autonomous research center that covers all aspects of research in Functional Materials with advanced Electric, Magnetic and Optical properties; from basic aspects to applications. Special activity is devoted to thin films materials and characterization techniques involving Large International Facilities, like neutron and synchrotron radiation sources.
Inspired by the natural biological materials, such as the spider silk, lotus root silk, shells, Professor Cheng's group is focused on bioinspired polymer nanocomposites, including assembly, design and physical properties investigation. Different nanomaterials, such as montmorillonite, carbon nanotubes and graphene oxide, are utilized as building blocks for constructing polymer nanocomposites.
The institute conducts research in the areas of piezoelectronics, photonics and nanopiezoelectric generators and other related areas of basic and applied basic research.
The research directions of BNLMS include: (1) structure and transformation of matter; (2) materials chemistry; (3) nanoscience and nanotechnology; (4) polymer science and engineering; (5) chemistry in life science; (6) environmental and energy chemistry.
The center is doing research in the areas of quantum computing, scanning probe nanotechnology, silicon-based optoelectronics, silicon quantum well devices, silicon and germanium structures.
The institute deals with nanotechnologies and photonic crystal research.
The scientific community grouped under the Ilse Katz Center aims to develop excellent, innovative fundamental research in the field of nano-scaled materials, that will lead to the opening of new technological horizons.
The group focuses on the development of a new classes of nanomaterials for optical, electrical and energy related applications.
The Molecular Foundry at Berkeley Lab is a user facility for the design, synthesis and characterization of nanoscale materials.
Berkeley is transitioning the Berkeley Microlab into the Marvell Nanolab.
Nanoscale mineral particles -- nanoparticles -- are naturally formed and removed from the environment by numerous chemical and biological processes. The Center's mission is to uncover the numerous roles played by nanoparticles in geochemical and biogeochemical processes.