Nanotechnology Research Laboratories
(Links listed alphabetically)
A | B |
C | D |
E | F |
G | H |
I | J |
K | L |
M | N |
O | P |
Q | R |
S | T |
U | V |
W | X |
Y | Z |
All
Showing results 1676 - 1700 of 1732
The common thread linking the group's research areas is the use of nanoporous interfaces, in a multiplicity of shapes and textures. The group is interested in methods that allow them to develop and control porous structures, and to deploy these structures on a variety of surfaces and environments; they also try to find applications in which nanoporous structures can be employed to modify the performance of different types of devices.
The three objectives of CNST are: 1) To create a center of research excellence in the field of nano science and technology 2) To establish core facilities and common labs to serve researchers in UST and other institutions in Taiwan and 3) To promote Taiwan's nanotechnology through education, research, training courses, and collaborative research with high tech industries.
Nanotechnology has both applications and implications for the environment. EPA is supporting research in this technology while evaluating its regulatory responsibility to protect the environment and human health. This site highlights EPA's research in nanotechnology and provides useful information on related research at EPA and in other organizations.
The US Food and Drug Administration regulates a wide range of products, including foods, cosmetics, drugs, devices, and veterinary products, some of which may utilize nanotechnology or contain nanomaterials.
Strategic Research Areas are: To achieve dramatic, innovative enhancements in the properties and performance of structures, materials, and devices that have controllable features on the nanometer scale.
A 3-year fulltime program for the Bachelor degree.
A 2-year fulltime program for the Master degree.
Nanotechnology Centre (CNT) as a successor of Institute of Materials Chemistry (IMACH) was established 2/1/2007. Establishment of the CNT reflects the changes in research and development activities of the IMACH which became strongly focused on the different fields of Nanomaterials and Nanotechnology. Establishment of the CNT reflects also accreditation and start of the new study program Nanotechnology at our University.
A PhD program in nanotechnology.
The Valencia Nanophotonics Technology Center (NTC) is a research center whose mission is to exert the leadership in Europe in the micro/nanofabrication of structures on silicon, as a key support for the development of nanotechnology and nanoscience, specially towards their applications in photonics: in the areas of optical fiber networks and systems, biophotonics, defence, security, photonic computation, etc.
The lab is focused on the creative design of energy storage platforms that be integrated into technology and/or replace fossil fuels. Central to everything they do is the development of new materials that are engineered at nanometer length scales, and developed using scalable and cost-effective approaches. This has far-reaching applications spanning aerospace systems, robotics, smart buildings, flexible electronics, and more.
The Vanderbilt Institute of Nanoscale Science and Engineering (VINSE) is a University institute focused on new science and technology based on nanoscale materials.
The research group of Cary Pint focuses on topics ranging across nanomaterials, energy storage, energy harvesting, sustainability, and water purification/desalination.
The Rosenthal group studies semiconducting nanocrystals. They are specifically interested in two applications exploiting the properties of nanocrystals: the use of nanocrystals as the light harvesting element in photovolatic devices and the use of fluorescent nanocrystals as biological probes for membrane proteins involved in neuronal signaling.
The goal of the European FP7 VascuBone project is to develop a 'tool box' for bone regeneration, which on one hand fulfils basic requirements and on the other hand is freely combinable with what is needed in the respective patient's situation. The tool box will include a variation of biocompatible biomaterials and cell types, FDA approved growth factors, material modification technologies, simulation and analytical tools like molecular imaging based in vivo diagnostics which can be combined for the specific medical need. This tool box will be used to develop translational approaches for regenerative therapies of three different types of bone defects.
The MacDiarmid Institute is New Zealand's premier research organisation concerned with high quality research and research education in materials science and nanotechnology.
Villanova has strived to develop state-of-the-art nanotechnology research facilities all over campus.
The new program, which was developed by faculty in the VCU Departments of Chemistry and Physics, is designed to cross-train students in the physical sciences of chemistry and physics with particular focus on how the science changes at reduced dimensions. There is a potential for other departments to become more involved as the program develops.
The B.S. degree program in Nanoscience (NANO) has recently been approved. Students can declare their major in NANO starting in Spring 2015.
The Virginia Tech Center for Sustainable Nanotechnology is a multi-department, interdisciplinary research center focused on advancing nanoscale science and engineering research and education with an emphasis on sustainability. They develop nanoscale technologies and leverage these technologies to help remedy global sustainability challenges in areas such as clean air and water, waste minimization, environmental remediation, food safety, and renewable energy.
The researchers in the Future Materials Laboratory are developing and utilizing a unique set of multiscale experimental and computational methods to study the mechanical behavior of a broad range of advanced materials, at the atomistic, micro, and macroscales.
This project assembles a collaborative team of interdisciplinary secondary science/math teachers and university scientists studying nanoscale processes and science education. As part of their collaborative effort, they hope to develop materials and resources that can be fit into secondary science or math curriculum.
This research group, directed by Professor Michael Hochella within the Department of Geosciences, works in the field of nanoscience applied to environmental geochemistry, biogeochemistry, and mineralogy.
The NCFL was created to provide researchers with the tools to work in converging disciplines at these dimensions. Established in 2007, it is an initiative of the Institute for Critical Technology and Applied Science at Virginia Tech. The facility is equipped with more than $10 million in highly specialized equipment, more than half of which was made possible through funding provided by Commonwealth Research Initiative. It seeks to help researchers investigate novel phenomena and build transforming technologies that solve critical challenges.