Nanotechnology Research – Universities

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 351 - 375 of 1198

 
The center has repositioned itself to meet the new challenges in minimization and multifunctionality of micro/nanoelectronic devices. In NOVITAS, they strategize their research to tackle these challenges through three research progammes: (1) Advanced Silicon Devices and Integration Technologies, (2) Compound Semiconductor Devices and ICs and (3) Nanotechnologies.
The research group of nanotechnology emphasizes its research on fuel cell technology, applied catalysis and reaction engineering, functionalized polymeric materials and nanocomposite materials for biosensors and pharmaceutical applications. The state-of-the-art analytical and characterization facilities available in the School provide support for cutting-edge research.
The three objectives for the center are 1) to promote and coordinate large-scale interdisciplinary research programs in nano-science and technology. 2) to plan and to co-ordinate cross-disciplinary undergraduate and postgraduate training in nano-science and technology. 3) to serve as a bridge between the university's nano-research and the industrial application in nanotechnology.
The research projects in the Nano-Energy Lab comprise enhancing thermal energy transport, storage and conversion efficiency using nanostructures.
The center aims to integrate all teaching resources to promote comprehensive nanotechnology-based education in eastern Taiwan. In order to improving the public understanding of science in nanotechnology in eastern Taiwan, they also have projects about public science education.
Offers an M. Tech. course in Nanotechnology.
A center of excellence in nanoscience and nanotechnology in Turkey.
(website in Chinese only)
NTU was created to be a center for conducting Nano science and technology studies.
The Centre's research is focused on innovative therapeutic solutions to current medical challenges and deals with various nanoscale applications and materials.
Founded by faculty from Biological Sciences, Chemistry, and Physics, the Centre for BioImaging Sciences's (CBIS) research is focused on the science and application of biological imaging by light and electron microscopy and the development of computational and microscopy-based methods and technologies.
In 2014, the National Research Foundation (NRF) of Singapore has awarded NUS with a S$ 50 M grant over the next 10 years in order to support the operational costs of GRC's labs and micro and nano-fabrication facility and the exploration, synthesis, and development of new devices based on two-dimensional (2D) materials of which graphene is the most famous, creating a new Centre for Advanced 2D Materials, directed by Prof. Antonio H. Castro Neto.
Established in 2010 within the National University of Singapore, the Graphene Research Centre (GRC) was created for the conception, characterization, theoretical modeling, and development of transformative technologies based on two-dimensional crystals, such as graphene.
The group's theme is to explore, innovate and translate mechanobio-inspired micro & nanotechnologies for biomedical applications.
The group is particularly interested in discovering novel nanobiology of nanomaterials. Some of this nanobiology is detrimental to the organism's well being and some is beneficial. The differentiation of either conclusion depends heavily on our understanding of how nanomaterials interact with biological systems. The group approaches their work from an observation initiated and hypothesis driven manner. From these findings, they aim to develop nanoparticle specific rules that drive certain cell effect. Understanding these rules helps to design better nanoparticles.
Excellent students from all scientific and engineering, as well as biomedical disciplines are welcome to apply for NanoCore PhD Scholarships. Students whom we are recruiting typically are in the top 10% of their class and have shown the ambition and ability to immerse themselves in challenging, high impact research projects. We also highly welcome students who have entrepreneurial ambitions.
The group's research is at the interface of cell biology, biophysics, and advanced imaging technology. They develop and apply superresolution microscopy and advanced imaging techniques to understand how cells built complex nanoscale machines from basic biomolecular building blocks to perform vital biological functions.
The initiative's approach to the development and promotion of nanotechnology research is to optimise resources in creating strategic high impact research while retaining diversity in research areas.
The minor programme in Nanoscience is offered by the Department of Chemistry and the Department of Physics at the Faculty of Science.
Graphene is a new age multifunctional material. As chemists, we are engaged in the growth, processing, derivatizing of graphene to make dna sensors, hybrids for solar cells, membrane for water purification. We hope to improve the quality of human life by researching on graphene, which we believe to be a fundamental building block for many useful devices.
Located at North Dakota State University, Fargo, the NDSU Center for Nanoscale Science and Engineering provides research and development with world-class facilities, equipment and staff with broad-based expertise.
NJIT is renowned for expertise in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and e-learning.
The research in Prof. Dong Ko's group focuses on how we can utilize nanocrystals for direct conversion into electricity of two of the most important ubiquitous sources of free energy: sunlight and waste heat.
Nanoscience and materials at NYU includes fullerene derivatization studies, chiral sensors and triggered materials, peptide nanotechnology; peptide surface interactions, molecular imaging agents, and proteins containing unnatural amino acids.
The ETM group focuses on unique strengths and capabilities to conduct world leading research, benefiting from synergies between: microelectronics; materials research and design to simulate nanostructures and technology processes and devices; fabrication in two in-house class 100-1000 clean rooms; characterisation of materials, devices and circuits; research on emerging electronic technologies