Nanotechnology Research – Universities

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 476 - 500 of 1230

 
The Nanoelectronic Modeling Group works in the area of nanoelectronics where we try to better the understanding of electron flow through nano-scale devices. The effort on modeling and simulation is heavily computer based. They try to connect to experimental results which they try to explain or even predict experiments.
The Purdue University - US Forest Service Forest Products Laboratory joint research program in nanoscale science and engineering of wood-based materials has three main drivers in forestry based nanotechnology, fundamental knowledge development, applied product development, and new technological innovations.
nanoHUB is a web-based initiative spearheaded by the NSF- Network for Computational Nanotechnology. Its mission is to serve as a resource for research and education in the areas of nano-electronics, NEMS, and their application to nano-biosystems and to be the place where experiment, theory and simulation meet and move nanoscience to nanotechnology. The Nanohub provides online simulation services as well as courses, tutorials, seminars, debates, and facilities for collaboration.
The lab is building and expanding the understanding of the fundamentals of atomic-level carrier transport and interactions, and is applying this knowledge to important energy, information, and biomedical technologies.
Nanoscale Science and Engineering embodies fundamental research and technology development of materials, structures, devices, processes, and systems where at least one physical dimension is on the length scale of approximately 1-100 nanometers. This is a current area of strength and a future area of growth at Purdue. In the department of Chemical Engineering there are 11 faculty involved with federally funded research programs in the area.
Created by the Network for Computational Nanotechnology, a consortium of eight member universities dedicated to furthering research and education in nanotechnology, nanoHUB.org offers free simulation, education, collaboration, and publication to the nanotechnology community.
The lab develops new classes of nanostructured metal-dielectric composites and their applications in nanophotonics, opto-electronics and spectroscopy.
The nanophysics lab uses innovative experimental techniques to examine the physical properties of objects in the nanoscale size range. The lab focuses primarily on scanning probe techniques.
The research carried out by the Centre covers two themes, nanoscale functional materials and devices and nanooptics and plasmonics.
Research includes nanoscale amterials such as nano polymers.
The aim of IMM is to conduct research in the field of functional molecular structures and materials. There is an emphasis on understanding and controlling complexity in order to be able to design new functionality in these systems. This research area can roughly be divided into two main themes: bio-inspired systems and nano/mesoscopic structures.
This program provides students with the knowledge, motivation, and self-learning skills required for continuous professional development along with complex project experience and problem solving. Our goal is that these students use their potential to become future leaders and champions of nano health. Students will have the option of having a primary or dual program focus. A dual focus would have an additional emphasis on Medical Physics.
The CCNI is designed both to help continue the impressive advances in shrinking device dimensions seen by electronics manufacturers, and to extend this model to a wide array of industries that could benefit from nanotechnology.
The research focus of this NSF-funded Nanoscale Science and Engineering Center (NSEC) for Directed Assembly of Nanostructures is to discover and develop the means to assemble nanoscale building blocks with unique properties into functional structures under well-controlled, intentionally directed conditions. Their overall mission is to integrate research, education, and technology dissemination to serve as a national and international resource for fundamental knowledge and applications in directed assembly of nanostructures.
Building upon the Institute's traditional strengths in materials science and engineering, Rensselaer researchers are part of a pre-eminent group of scientists around the world working to manipulate matter with atomic precision. With an NSF Nanoscale Science and Engineering Center on campus, a new microelectronics clean room capable of fabrication on the nano-level, and a talented group of biotechnology researchers bringing nano-capabilities to their work, Rensselaer has taken a place at the heart of what has been framed by some as the next 'industrial revolution'.
The Center is primarily involved with fundamental nanotechnology research in materials, devices and systems. By combining computational design with experimentation the Center's researchers are discovering novel pathways to assemble functional multiscale nanostructures with junctions and interfaces between structurally, dimensionally, and compositionally different nanoscale building blocks to create useful hierarchical material systems.
Research in RQI encompasses advanced materials, quantum magnetism, plasmonics and photonics, biophysics, ultracold atom physics, condensed matter and chemical physics, and all aspects of nanoscience and nanotechnology.
Upon completing the BA degree with a major in Materials Science and Nanoengineering, students will demonstrate an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
The Center for Biological and Environmental Nanotechnology (CBEN) is a National Science Foundation (NSF) funded Nanoscale Science and Engineering Center (NSEC) at Rice University. Aiming to transform nanoscience into a field with the impact of a modern-day polymer science, CBEN focuses on research at the interface between "dry" nanomaterials and aqueous media such as biology and the environment, developing the nanoscience workforce of the future, and transferring discoveries to industry
Faculty in the Department of Materials Science and NanoEngineering hold joint appointments in several other departments: mechanical engineering, bioengineering, chemistry, chemical and biomolecular engineering, electrical and computer engineering, civil and environmental engineering and physics and astronomy.
The Halas Nanophotonics Group at Rice University
Dedicated to the development of optics at the nanoscale
Upon completing the MMSNE degree, students will be able to acquire broad, advanced knowledge within either Materials Science or NanoEngineering, which is also in-depth in one major sub-discipline of the field; and conduct research at an advanced level in at least one area of Materials Science and Nanoengineering.
The Hafner Nano-Bio Lab at Rice University works at the Nano-Bio interface.
The Nanomaterials, Nanomechanics and Nanodevices lab (N3L) at Rice University is led by Prof. Jun Lou. Their interests lie in the areas of nanomaterial synthesis, nanomechanical characterization and nanodevice fabrication for energy, environmental and biomedical applications.