Nanotechnology Research Laboratories

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 276 - 300 of 1935

 
DARPA is the central research and development organization for the Department of Defense. It manages and directs selected basic and applied research and development projects for DoD, and pursues research and technology where risk and payoff are both very high and where success may provide dramatic advances for traditional military roles and missions. DARPA manages a number of nanotechnology projects.
Since its inception in 1987, the Institute has been a bright source of creativity and innovation at the edge of microelectronic science. DIMES integrates nanoscale and high-speed device physics, material science and process technology, circuit design, and embedded system design methodology in one institute.
The department focuses on the functioning of single cells in all their complexity down to the molecular level. Understanding the mechanisms operating inside a cell is very useful for practical applications in, for example, improved health care, molecularly targeted medicine, and development of new energy sources. The department of Bionanoscience is part of the university's successful Kavli Institute of Nanoscience.
The Nanobiology programme of TU Delft and Erasmus MC builds on extensive existing bottom up research collaborations and cooperative mission organizations like Medical Delta. The molecular building blocks of living organisms are the focus and current advances in the nanotechnology toolkit enable the precise visualization, study and control of these biological molecules. Developments in biomedicine, such as studies on human genome variation and the control of stem cells, increasingly require analysis and quantitative description at the fundamental level.
The department studies quantum phenomena in a wide variety of nanometer scale devices and materials, exploring new physics and novel applications of quantum effects. The department consists of a number of active scientists working on both experimental and theoretical aspects of Quantum Nanoscience.
The Kavli Institute of Nanoscience at Delft University of Technology consists of six research groups and a nanofabrication cleanroom facility.
The project Development of Lithography Technology for Nanoscale Structuring of Materials Using Laser Beam Interference (DELILA) focuses on researching and developing a new production technology for fabrication of 2D and 3D nano structures and devices. In particular, DELILA will enable low cost and large volume production of surface structures and patterns with nanometric resolution.
The "Design for Micro & Nano Manufacture (Patent-DfMM)" Network of Excellence aims to establish a new technical community that will address the underlying engineering science to ensure that problems affecting the manufacture and reliability of products based on MNT can be addressed before prototype and pre-production.
The Focused Research Program 'Nanowires and Nanotubes: From Controlled Synthesis to Function' supports the Theory of Development of Templates - Fabrication of Nanowires and Nanotubes - Charaterization.
DINAMICS is a European FP6-funded project that aims to promote the uptake of nanotechnological approaches by developing an integrated costeffective nanobiological sensor for detection of bioterrorism and environmental assays. The prime deliverable is an exploitable lab-on-a-chip device for detection of pathogens in water using on-the-spot recognition and detection based on the nanotechnological assembly of unlabelled DNA.
The DIAMANT team has pioneered the discovery and development of diamond as a uniquely promising material system for solid-state molecular technologies: Diamond has exceptional optical and magnetic properties that are associated with dopant complexes - or 'solid-state molecules' - in the diamond lattice. The DIAMANT project will develop new technologies to enable placement of exactly one atom at a time into a selected location in the diamond lattice with nanometre precision.
The European Union's 7th Framework Programme's collaborative research project FP7-2009-IST-4-248613 DIAMOND - Diagnosis, Error Modelling and Correction for Reliable Systems Design aims at improving the productivity and reliability of semiconductor and electronic systems design in Europe by providing a systematic methodology and an integrated environment for the diagnosis and correction of errors.
Research in the Diederich group at ETH Zurich is structured around four central themes: Molecular recognition in chemistry and biology; Modern medicinal chemistry: molecular recognition studies with biological receptors and X-ray structure-based design of nonpeptidic enzyme inhibitors; Supramolecular nanosystems and nano-patterned surfaces; Advanced materials based on carbon-rich acetylenic molecular architecture.
The objective of the EU project 'Development of diamond intracellular nanoprobes for oncogen transformation dynamics monitoring in living cells' (DINAMO) is to develop the nanodiamond particle (NDP) non-invasive label-free nanotechnology sensing platform for real-time monitoring of 1) biomolecular processes inside (and outside) living cells, as modified by oncogenesis, 2) the kinetics of gene-assisted processes in the cells, in accordance with the Call objectives.
A European project for the devolopment of an integrated platform to assess the risk of nanoparticles.
The new Dresden Center for Nanoanalysis (DCN) will particularly focus on '4D AMASE - 4D Advanced Materials Analysis for Science and Engineering', with the goal to become an internationally visible center of competence as well as a European user facility in the field of solid state and materials analysis.
The BioNanoTechnology research at the School of Biomedical Engineering, Science, and Health Systems at Drexel University (Drexel BIOMED) is focused on bioinformatics, biosensing, bioimaging, tissue engineering, drug delivery, and neuroengineering, which are the main research thrusts of the school.
This interdisciplinary materials science and engineering track provides a strong foundation for nanoscience and nanotechnology and is designed to prepare MSE majors for future interdisciplinary careers, for graduate research programs in materials science, nanotechnology, bioengineering and other disciplines.
The research group of MinJun Kim is experimentally investigating the mechanics of fluids at small scales including the behavior of biological materials in micro- and nanofabricated structures.
The Spanier Group at the MesoMaterials Lab at Drexel uses variable temperature scanning probe microscopy to probe selected physical, electronic, mechanical, magnetic and optical properties of nanostructures.
Research in the Kim Group includes nanofabrication and microfabrication for biological applications, micro- and nanofluidics and bacteria actuation, sensing, and transport at the micro/nanoscale.
Research in the Nanomaterials Group is focused on the fundamental and applied aspects of synthesis and characterization of carbon nanomaterials (nanotubes, nanodiamond and nanoporous carbons), ceramic nanoparticles (whiskers, nanowires, etc) and composites.
The MSc programme in Physics and Nanotechnology covers a wide range of technological, theoretical, and experimental techniques in modern physics. The applications include various topics, such as the development of nanostructured materials with tailor-made electrical, magnetic, optical, mechanical and chemical properties, manufacturing and integration of nano- and micro-components in systems design, modelling of complex biological systems, optical data processing and transfer, and the development of technologies for sourcing, storing, and converting sustainable energy - e.g. fuel cells and hydrogen technology.
The Department of Micro- and Nanotechnology - DTU Nanotech - is a highly esteemed research institution within the field of micro- and nanotechnology. Applied science, innovation strategies and state-of-the-art technology form our core identity as a scientific institution. We encourage technology transfer and technology development through industry collaboration, and industrial PhD students are an integrated part of our PhD programme.
Nanoscience and nanotechnology are built upon chemistry and physics. This degree is a solid science degree (physics and chemistry) but with a unique focus on nanoscience and nanotechnology. In the Years 3 and 4 of the degree the student chooses to major in either physics or chemistry, but all students do the nanotechnology modules.