High Performance Computing in Materials Science: ThyssenKrupp Steel Europe to fund young researchers

(Nanowerk News) From January 1, 2012, ThyssenKrupp Steel Europe AG will be funding a group of young researchers from Ruhr University Bochum. The computer scientists and mathematicians will carry out research jointly with the Interdisciplinary Centre for Advanced Materials Simulation (ICAMS) over a period of six years. The goal is to implement the materials models and simulations developed by ICAMS as efficiently as possible on high-performance computing systems. ThyssenKrupp Steel Europe is providing funds of 1.2 million euros for this work.
From January 1, 2012 ThyssenKrupp Steel Europe AG will be funding a group of young researchers from Ruhr University Bochum. The computer scientists and mathematicians will carry out research jointly with the Interdisciplinary Centre for Advanced Materials Simulation (ICAMS) over a period of six years. The goal is to implement the materials models and simulations developed by ICAMS as efficiently as possible on high-performance computing systems. ThyssenKrupp Steel Europe is providing funds of 1.2 million euros for this work.
Developing materials on the computer
Before a material is put to use in industry, developers test its functions and response. In the future, this will be done increasingly with the aid of efficient computer simulations. Materials scientists, physicists, chemists and engineers at ICAMS are developing models for this. Put simply, they build theoretical new materials from individual atoms and simulate how these materials would behave during processing and use. For example, they examine the correlations between the strength of an automobile component and the chemical bonds between the individual iron atoms it is made of. Such multi-scale models place immense demands on computers and algorithms.
Methods for high-performance computers
Computer simulation and modeling of materials are regarded as key future technologies. To increase speed and efficiency, ICAMS intends to also use high-performance computer systems in the future. The "High Performance Computing in Materials Science" group to be funded by ThyssenKrupp, comprising one post-doctoral researcher and several research assistants, will investigate methods to enable materials to be developed and tested on high-performance systems. The ability to model materials on the computer and reliably predict their behavior in the real world will reduce the need for time- and cost-consuming trials and allow new materials to be brought to market more quickly.
Source: Ruhr-Universität Bochum