Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 145 - 152 of 155 in category All (newest first):

 

Butterflies provide clues for replacing color pigments with photonic nanocrystals

Photonic crystals are attractive optical materials for controlling and manipulating the flow of light. They can be engineered to produce a variety of optical filtering functions. The growing efforts of physicists and materials scientists to fabricate photonic (nano)crystals were motivated mainly by the potential application of these materials in optical computing, the manufacturing of more efficient lasers, and other exciting new phenomena, like those arising from the application of disturbances such as shock waves. The manufacturing of large-area photonic crystals operating in the visible spectrum is still a challenging and expensive task, given present-day laboratory techniques. However, as with so many other materials, nature has already found a solution. Because they are ready made, common in nature, and because they show a very high complexity, biological photonic-crystal structures will be an essential tool for building a useful knowledge of inhomogeneous optical media.

Sep 21st, 2006

Electrochromic devices based on tungsten oxide

electrochromic-deviceAn electrochromic display is one of the most attractive candidates for paper-like displays, so called electronic paper, which will be the next generation display, owing to attributes such as thin and flexible materials, low-power consumption, and fast switching times.

Jun 19th, 2006

Superior optical labels made from diamond nanoparticles

Optical labeling is an important tool in biological imaging because it offers superb discrimination between the sites of interest and the crowded background of a biological specimen. Diamonds nanocrystals have several advantages over other optical labels and open new opportunities in optical imaging, especially in applications where the size of optical labels represents an important parameter.

Jun 1st, 2006

Quantum dots in a tube could open a new chapter in opto-electronics

Researchers in Germany managed to integrate quantum dots (QD) into the walls of nano- and microtubes. This novel structure serves as a quantum light emitter as well as optical waveguide. This represents a major step toward the realization of flexible high quality factor optical resonators based on tubes.

Apr 11th, 2006

One step closer to industrial fabrication of photonic crystal devices

Researchers in the UK and Germany told Nanowerk that they developed a simple, fast and efficient method for fabricating metallic photonic crystals. This new method opens the door to a number of applications in telecommunication, all-optical switching, sensors, and semiconductor devices.

Mar 8th, 2006