Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1 - 8 of 48 in category Solar Cells (newest first):

 

How nanostructure geometry affects polymer photovoltaic device efficiency

nanostructureConjugated polymer based organic photovoltaic (OPV) devices have been the subject of increasing research interest over the past years due to their potential of being light weight, mechanically flexible, semitransparent. To increase the efficiency of OPV, it is necessary to achieve a precisely controlled donor-acceptor phase separation within the short exciton diffusion length without dead ends, as well as a high hole mobility within the polymer. Now, researchers have demonstrated the effects of nanostructure geometry on the nanoimprint induced P3HT chain alignment and the performance of nanoimprinted photovoltaic devices.

Posted: Jul 22nd, 2014

Complete solar cells printed by inkjet

printed_solar_cellResearchers report for the first time the fabrication and measurement of all-inkjet-printed, all-air-processed organic solar cells. Organic photovoltaic technologies have the potential to become a thin-film alternative to inorganic silicon photovoltaics due to their intrinsic potential for low-cost print processing from solution - high-speed and at low temperature. Organic solar cells can be integrated into building facades and windows because they are optically translucent and can be manufactured on large areas at high throughput.

Posted: Jun 16th, 2014

An integrated solar-powered energy conversion-storage-utilization system

photoanodeAlmost all strategies for solar energy harvest and solar energy storage that exist today are developed as independent technologies. For instance, a solar cell generates electricity from the absorption and conversion of sunlight, while the storage of the produced electricity has to be implemented with another set of energy utilization solutions such as batteries/supercapacitors and fuel cells. With quite an ingenious solution, researchers have now demonstrated a hybrid, multifunctional material system that allows for simultaneous solar power generation (respectively hydrogen production), electrical energy storage, and chemical sensing.

Posted: Jun 6th, 2014

Interwoven solar cells turn T-shirt into a power textile

woven_solar_cellNew solar cell technology allows your T-shirt to generate power from its interwoven solar cell wires. Researchers have developed a novel efficient wire-shaped polymer solar cell by incorporating a thin layer of titania nanoparticles between the photoactive material and electrode. An aligned carbon nanotube fiber enabled high flexibility and stability of the resulting polymer solar cell. These miniature polymer solar cell wires, when woven into textiles, can serve as a power source.

Posted: Apr 3rd, 2014

Origami foldable solar cells (w/video)

foldable_solar_cellsInspired by a particular folding technique called rigid origami, researchers have demonstrated foldable silicon solar cells. The fabrication process utilizes mainstream high-temperature processes to fabricate high-performance stretchable electronics. In this approach, high-performance functional devices are fabricated on rigid surfaces and do not experience large strain during deformation, and these rigid surfaces are joined by serpentine-shaped interconnects that allow for a full-degree folding and unfolding, which enables deformability.

Posted: Feb 26th, 2014

Nanopaper optimized for solar cells

transparentTransparent and flexible substrates are widely explored for flexible electronics and researchers have been working on techniques to develop thermally stable and biodegradable materials that are as easily printable as paper. Previously, we reported on a transparent and flexible nanopaper transistor. The same team has now reported a novel transparent paper substrate design optimized for solar cells. They introduced a novel transparent paper made of earth-abundant wood fibers that simultaneously achieves an ultrahigh transmittance and ultrahigh optical haze.

Posted: Jan 22nd, 2014

Increasing solar cell efficiency limit by 'heating up' 'cold' photons

sunshineThe quest for efficient low-cost solutions for solar energy conversion faces many obstacles, both, fundamental and technical. As a result, even 'ideal' solar cells have maximum intrinsic efficiency - known as the Shockley-Queisser (S-Q) limit - of 33% for the illumination by the non-concentrated sunlight. A number of architectures have been proposed for reducing losses in solar cells in order to overcome the S-Q single-junction limit. Now, researchers have proposed a new way to break the fundamental S-Q limit by using a mechanism of thermal up-conversion.

Posted: Dec 5th, 2013

Wearable textile battery can be recharged by sunlight

flexible_solar_cellGoing hand in hand with the development of wearable electronic textiles, researchers are also pushing the development of wearable and flexible energy storage to power those e-textiles. Researchers have now developed wearable textile batteries that can be integrated with flexible solar cells and thus be recharged by solar energy. The team found unconventional materials for all of the key battery components and integrated them into a fully wearable battery.

Posted: Nov 8th, 2013