Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1 - 8 of 1899 in category All (newest first):


3D-printed decal electronics for the Internet-of-Everything

butterfly_decalResearchers have created a new method to print high-performance electronics by combining the extremely mature CMOS fabrication processes and recently developed additive manufacturing techniques. For the first time, an affordable and reliable manufacturing process for the integration and packaging of fully flexible high-performance electronics has been developed for future Internet-of-Everything (IoE) applications. Such decal electronic systems could be used like RFID tags are today but with much more functionality and performance.

Posted: Oct 17th, 2016

Energy generation from heat with a solar cell built backwards

solar_cellSolar cells absorb incoming sunlight and convert a part of photon energy into electricity. The remainder of photon energy is dissipated as heat. Although the idea is rather counter-intuitive, 'reverse solar cell' systems can also generate electric power by emitting rather than absorbing photons. Such systems - known as thermoradiative cells - generate voltage and electric power via non-equilibrium thermal radiation of infrared photons. Thermoradiative cells offer an opportunity to generate clean energy by harvesting radiation from largely untapped terrestrial thermal emission sources, potentially including the Earth itself.

Posted: Oct 14th, 2016

A multifunctional biophotonic platform enabled by moire metasurfaces

microbubbleResearchers demonstrate for the first time a multifunctional biophotonic platform enabled by the multiband resonance peaks of the plasmonic moire metasurfaces. Benefiting from the multiband nature of moire metasurface and the near-field enhancement from the metal-insulator-metal configuration, the scientists achieved a dual-band metasurface patch with strong plasmonic resonances at both near-infrared and mid-infrared regimes.The plasmonic nanostructures support plasmon resonances at different wavelengths due to the gradient in size and shape.

Posted: Oct 12th, 2016

Enhanced kinetics on conductive polar electrocatalysts for lithium-sulfur batteries

electrocatalysisResearchers have explored the role of intrinsic bulk electrical conductivity and surface polarity in the electrocatalysis of polysulfide redox reactions. They synthesized highly porous and conductive titanium carbide (TiC)-based composite cathode materials and to assemble lithium-sulfur (Li-S) batteries with high sulfur loading. Li-S cells employing the as-synthesized TiC-based cathode exhibited reduced internal resistance, enhanced energy efficiency, and prolonged service life.

Posted: Oct 10th, 2016

Insights into the microwave non-thermal effect for tumor therapy

cancer_therapyMicrowave hyperthermia is one of the most important clinical thermotherapy techniques due to the instinctive advantages of non-intrusive heating model, fair depth of penetration in tissues and ideal potential of killing tumor cells without surgical risks or toxicity of chemotherapy. Scientists have now developed a novel multifunctional nanoplatform to combine the non-thermal and thermal effects of microwave to achieve enhanced thermal/chemo cancer therapy under mild microwave irradiation.

Posted: Oct 7th, 2016

3D printing highly conductive nanocomposites

printed_nanoscaffoldsCarbon nanotube enabled nanocomposites have received much attention as a highly attractive alternative to conventional composite materials due to their mechanical, electrical, thermal, barrier and chemical properties such as electrical conductivity, increased tensile strength, improved heat deflection temperature, or flame retardancy. In new work, researchers report the fabrication of highly conductive carbon nanotube/polylactic acid nanocomposites used as 3D printable conductive inks for fabrication of conductive scaffold structures applicable as liquid sensors.

Posted: Oct 6th, 2016

Nanotube chip captures and analyzes circulating tumor cells in blood

bloodtest_arrayResearchers demonstrate a completely new micro-array design that is looking at capture and detection of circulating tumor cells (CTCs) from an entirely new perspective. As an alternative to invasive biopsies, capturing CTCs is of great interest for evaluating cancer dissemination, predicting patient prognosis, and also for the evaluation of therapeutic treatments, representing a reliable potential alternative to invasive biopsies and subsequent proteomic and functional genetic analysis. The new approach is based on a static isolation in the form of micro-arrays of single-walled carbon nanotubes.

Posted: Oct 5th, 2016

New study shows that iron oxide nanoparticles inhibit tumour growth

cancer_cellsThe intravenous iron-replacement product ferumoxytol and other iron oxide nanoparticles are being used for treating iron deficiency, as contrast agents for magnetic resonance imaging, and as drug carriers. In a new study, researchers have shown an intrinsic therapeutic effect of ferumoxytol on the growth of early mammary cancers and lung cancer metastases in liver and lungs. They showed that ferumoxytol can activate the immune system to attack cancer cells. This is the first description of an intrinsic therapeutic effect of iron oxide nanoparticles against cancer.

Posted: Oct 4th, 2016