Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 33 - 40 of 1746 in category (newest first):

 

A one-pot strategy for synthesizing high-performance transparent conducting oxide nanocrystal inks

electronic_inkResearchers have now developed a simple high-throughput, one-pot procedure to prepare a series of nanocrystal inks that makes it a very attractive fabrication process for applications in a wide range of all-solution-processed, flexible, stretchable, and wearable optoelectronic devices. The proposed approach, which can easily be scaled up to 10g, is generic for various transparent conducting oxides as well as other oxides nanocrystal inks.

Posted: Jan 9th, 2015

A risk-ranking tool for nanomaterials used by the military

stealth_fighterMilitary organizations around the world, especially in the U.S., have been quicker than most to appreciate the potential of nanotechnology. More money is being spent on nanotechnology research for military applications than for any other area. Public releases about military nanotechnology research and development activities are full about sensors, batteries, wound care, filtration systems, smart fabrics, and lighter, stronger, heat-resistant nanocomposite materials etc. Naturally, nanomaterial safety has become an important issue for military organizations as well.

Posted: Jan 6th, 2015

Single-pot electrolytic synthesis of hydrogen and carbon fuels

STEP_processResearchers have successfully attempted to simultaneously co-generate hydrogen and solid carbon fuels from a mixed hydroxide/carbonate electrolyte in a 'single-pot' electrolytic synthesis at temperatures below 650 C. This is the first demonstration of the co-generation of hydrogen and carbon fuels at a single electrode and from a molten electrolyte. Here, fuel production can be driven entirely by solar energy using the STEP process in which solar thermal energy increases the system temperature to decrease electrolysis potentials.

Posted: Jan 5th, 2015

Silky substrate makes flexible solar cells biocompatible

flexible_photovoltaicsResearchers have integrated a biocompatible silk fibroin with a mesh of silver nanowires to achieve a flexible, transparent, and biodegradable substrate for efficient plastic solar cell. The most common flexible substrates used for flexible solar cells so far have been synthetic polymers such as PET and PEN. However, if organic solar cells are to be applied onto clothes and other soft surfaces, some of which come into direct contact with skin, they are required to be human-compatible, non-toxic and non-irritable.

Posted: Dec 30th, 2014

Shapeshifting metal nanoparticles eating tracks in graphene

graphene_patterningA widely discussed method for the patterning of graphene is the channelling of graphene by metal nanoparticles in oxidizing or reducing environments. Researchers have now performed in-situ transmission electron microscopy experiments of silver nanoparticles channeling on graphene and discover that the interactions in the one-dimensional particle-graphene contact line are sufficiently strong so as to dictate the three-dimensional shape of the nanoparticles.

Posted: Dec 19th, 2014

Carbon nanotubes enable new way of sound generation

carbon_nanotubesCarbon nanotube assemblies enabled design of a hybrid thermo-electromagnetic sound transducer with unique sound generation features that are not available from conventional diaphragm and thermo-acoustic speakers. New work describes a hybrid thermo-electromagnetic sound transducer (TEMST) fabricated using highly porous multi-walled carbon nanotube sheet that was placed in the proximity of a permanent magnet. Upon electrical AC excitation, thermal response of the material is combined with diaphragm-like sheet oscillations induced by the electromagnetic action of the Lorentz force.

Posted: Dec 18th, 2014

A nanoelectromechanosensing approach to detect cancerous transformation of single cells

cell_with_microfilamentsSince diseased cells, such as cancer cells, frequently carry information that distinguishes them from normal cells, accurate probing of these cells is critical for early detection of a disease. Adding to these highly accurate methods for monitoring such alterations in single cells, researchers have now demonstrated a nanoelectromechanical procedure to relate the correlation between the mechanical stimulation of a cell's actin filaments and the electrical activities of ion channels to the cancerous state of the cell.

Posted: Dec 17th, 2014

How the insurance market perceives nanotechnology risks

insuranceInsurance companies are major stakeholders capable of contributing to the safer and more sustainable development of nanotechnologies and nanomaterials. This is owed to the fact that the insurance industry is one of the bearers of potential losses that can arise from the production and use of nanomaterials and nanotechnology applications. Researchers have examined how the insurance market perception of nanotechnology can influence the sustainability of technological advances and insurers? concern for nanotechnology risks. They claim that, despite its role in sustaining technology development in modern society, insurers' perception on nanomaterials has been largely overlooked by researchers and regulators alike.

Posted: Dec 16th, 2014