Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1 - 8 of 83 in category Fuel Cells, Hydrogen Applications (newest first):

 

Carbon-nanotube paper electrodes with very high loading for lithium-sulfur batteries

electrodeResearchers have created a free-standing carbon nanotube paper electrode with high sulfur loading for lithium-sulfur batteries employing a bottom-up strategy to design and fabricate a hierarchical structure. This new fabrication method does not employ aluminum foil or binders, thereby fully utilizing the advantage of a Li-S system with high specific capacity. This proof-of-concept experiment indicates that the rational design of the nanostructured electrode offers the possibility to efficiently use the active materials at practical loading.

Posted: Oct 17th, 2014

CNT@NCNT coaxial nanocables - Toward full exposure of 'active sites'

coaxial_nanocableResearchers have demonstrated a unique coaxial carbon nanocable material with pristine carbon nanotubes as the core and nitrogen-doped wrinkled carbon layer as the shell. The active sites rendered by the surface enriched dopant atoms on the carbon nanocables are accessible and effective to catalyze the oxygen involved electrochemical reactions. These coaxial nanocables afford higher ORR/OER current compared with the routine bulk doped nitrogen-doped carbon nanotubes.

Posted: Oct 10th, 2014

Graphene materials for energy storage applications

grapheneGraphene and graphene-based materials have attracted great attention in energy storage applications for batteries and supercapacitors owing to their unique properties of high mechanical flexibility, large surface area, chemical stability, superior electric and thermal conductivities that render them great choices as alternative electrode materials for electrochemical energy storage systems. A recent review article summarizes the progress in graphene and graphene-based materials for four energy storage systems, i.e., lithium-ion batteries, supercapacitors, lithium-sulfur batteries and lithium-air batteries.

Posted: Oct 9th, 2014

Titania nanotubes' role in building ultrafast rechargeable Li-ion batteries

titania_nanotubesNanotechnology has the potential to deliver the next generation lithium-ion batteries (LIBs) with improved performance, durability and safety at an acceptable cost. However, several challenging bottlenecks remain to build the ideal nanostructured electrodes for ultrafast rechargeable LIBs. To overcome these challenges, researchers developed a mechanical force-driven method to prepare elongated bending titania-based nanotubes for high-rate LIBs.

Posted: Sep 4th, 2014

Crumpled graphene boosts performance of high-energy lithium storage materials

crumpled_grapheneA three-dimensional crumpled graphene-encapsulated nickel sulfide electrode is reported as a superior high-energy lithium storage material. Compared with an electrode without crumpled graphene encapsulation, the optimized electrode yields significant improvements, especially in the cycling stability and rate capability. This enhanced performance is attributed to the 3D framework providing high continuous electron pathway and more free space for charge and mass transfer, and the stabilizing effect of the crumpled graphene based stretchy shell.

Posted: Aug 6th, 2014

Nitrogen tunes carbon-sulfur interfaces for stable lithium-sulfur batteries

anode_structureSulfur is a very intriguing solution for the design of high energy density storage devices. The lithium-sulfur battery theoretically delivers an energy density which is 3-5 times higher than traditional lithium-ion batteries. Unfortunately, several obstacles so far have prevented the practical demonstration of sulfur-based cathodes for Li-S batteries. Among them, the most important one is the rapid capacity fading. Researchers have now developed a novel strategy towards highly stable Li-S batteries by building a strongly coupled interface between surface- mediated carbon hosts and various sulfur-containing guests.

Posted: Aug 5th, 2014

The promise of nanotechnology for the next generation of lithium-ion batteries

nanopillarsNanotechnology has the potential to deliver the next generation lithium-ion batteries (LIBs) with improved performance, durability and safety at an acceptable cost. At present, there is a great deal of interest to upgrade the existing LIBs with improved properties and arrive at a battery technology that would permit smart-storage of electric energy. Futuristic smart electric grids that can provide an uninterruptible power supply to a household for 24 hours can replace the currently used lead acid battery systems by performing better in terms of longer back up time and reduced space requirements. With the advent of next generation LIBs, electric vehicles are expected to cover longer distances with shorter charging times; mobile phones and laptops are expected to be charged within minutes and last longer.

Posted: Jun 18th, 2014

Novel nanocarbon architecture makes a superior bifunctional electrocatalyst

NanocarbonRenewable and high-capacity energy systems like fuel cells and metal-air batteries are key components in any scenario on future energy systems free of fossil fuels. The performance of fuel cells largely depends on the oxygen reduction reaction - the process that breaks the bonds of the oxygen molecules - which is substantially affected by the activity of the cathode catalyst. Researchers have now demonstrated the synthesis of a novel N-doped graphene/single-walled carbon nanotube hybrid material by a facile and cost-favorable one-step CVD method.

Posted: Jun 9th, 2014