Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1 - 8 of 155 in category Electronics, NEMS (newest first):

 

Suppressing flicker noise in graphene boron nitride heterostructure field-effect transistors

graphene_HFETThe noise level in devices with graphene and other two-dimensional (2D) materials has to be reduced in order to enable their practical applications. It will not be possible to build graphene-based communication systems or detectors until the noise spectral density is decreased to the level comparable with the conventional state-of-the-art transistors.Researchers have now demonstrated that the electronic noise in graphene devices can be strongly suppressed if a graphene channel is encased between two layers of hexagonal boron nitride.

Posted: Jul 27th, 2015

Towards self-powered electronic papers

nanopaperAn international research team has designed and demonstrated novel self-powered human-interactive transparent nanopaper systems, utilizing transparent nanopaper as base material. This nanopaper system is based on an electrostatic induction mechanism and a dielectric material. That makes them self-powered, i.e. able to operate without the need for external power. The basic working mechanisms of the resulting devices are electrostatic induction effects caused by the retaining charges.

Posted: Jul 13th, 2015

Nanoelectronics on textile, paper, wood and stone

flexible_electronicsResearchers have developed a simple double-transfer printing technique that allows them to integrate high performing electronic devices - featuring state-of-the-art, non-planar, sub-20nm FinFET devices - fabricated on novel flexible thin silicon sheets with several kinds of materials exhibiting complex, asymmetric surfaces including textile, paper, wood, stone, and vinyl. This process utilizes soft materials to integrate nonplanar FinFET and planar traditional MOSFET devices onto various wavy, curvilinear, irregular, or asymmetric surfaces.

Posted: Jul 9th, 2015

Flexible FeRAM fabricated with CMOS-compatible approach

flexible_electronicsResearchers have demonstrated the fabrication flexible ferroelectric random access memory (FeRAM) devices using state-of-the-art CMOS processes (sputtering, photolithography, and reactive ion etching). This bridges the existing gap between rigid inflexible semiconductor high performance, integration density, yield, and reliable electronics and highly flexible polymer/hybrid materials based relatively low performance electronics. This enables combining the best of two worlds to obtain flexible high performance electronics.

Posted: Jul 1st, 2015

Graphene electrodes revolutionize the scaling of piezoelectric NEMS resonators

NEMS_resonatorThe key challenges associated with the development of high performance MEMS and NEMS resonators for RF wireless communication and sensing applications are the isolation of energy-dissipating mechanisms and scaling of the device volume in the nanoscale size-range. Researchers show that graphene-electrode based piezoelectric NEMS resonators operate at their theoretical 'unloaded' frequency-limits, with significantly improved electromechanical performance compared to metal-electrode counterparts, despite their reduced volumes.

Posted: Jun 16th, 2015

Wearing single-walled carbon nanotube electronics on your skin

flexible_electronicsResearchers present materials and device design/fabrication strategies for an array of highly stable and uniform SWCNT-based stretchable electronic devices consisting of capacitors, charge-trap floating-gate memory units, and logic gates (inverters and NAND/NOR gates). The researchers' detailed material, electrical, and mechanical characterizations and theoretical analysis in mechanics provide useful insights in the design and development of SWCNT-based wearable electronic systems.

Posted: May 13th, 2015

Novel nanotube tunnel FET architecture

transistorClassical semiconductor physics suggests that a single charge transport CMOS device cannot achieve ultra-high-performance and ultra-low-standby-power at the same time. Nanoelectronics researchers are trying to design devices that hit the 'sweet spot', i.e. where a charge transport device can provide its highest performance at its lowest power consumption, especially in its 'off' state. In new work, researchers show a unique device concept which combines the advantages of a tunnel field-effect transistor for ultra-low OFF (leakage) current and ultra-steep sub-threshold slope for sharper and faster ON and OFF switching due to the FET's nanotube architecture.

Posted: May 7th, 2015

Fully transparent, rollable electronics built with a graphene/carbon nanotube backbone

transparent_electronicsResearchers have successfully built rollable and transparent electronic devices that are not only lightweight, but also don't break easily. They managed to overcome two major challenges associated with the manufacture of flexible electronics: The temperature restriction of plastic substrates and the difficulty of handling flexible electronics during the fabrication process. The team rolled their transistor devices 100 times on a cylinder with radius of 4 mm, without significantly degrading their performance.

Posted: Jan 23rd, 2015