Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 17 - 24 of 1682 in category (newest first):

 

Multimodal graphene biosensor integrates optical, electrical, and mechanical signals

graphene_sensorAs a prime example of how the integration of multiple disparate nanotechnology fields allows the realization of novel or expanded functionalities, researchers have demonstrated a multimodal sensing device which integrates the functionalities of three traditional single mode sensors. Specifically, the team fabricated a graphene-based multimodal biosensing device, capable of transducing protein binding events into optical, electrical, and mechanical signals.

Posted: Sep 8th, 2014

Titania nanotubes' role in building ultrafast rechargeable Li-ion batteries

titania_nanotubesNanotechnology has the potential to deliver the next generation lithium-ion batteries (LIBs) with improved performance, durability and safety at an acceptable cost. However, several challenging bottlenecks remain to build the ideal nanostructured electrodes for ultrafast rechargeable LIBs. To overcome these challenges, researchers developed a mechanical force-driven method to prepare elongated bending titania-based nanotubes for high-rate LIBs.

Posted: Sep 4th, 2014

The future Belgian register for nanomaterials: challenges ahead for the nanotechnology community

legalOn 7th February 2014, the Belgian federal government issued a press release declaring that the draft Royal Decree creating a Belgian register for nanomaterials has been approved. The Royal Decree would enter into force on 1st January 2016 for substances manufactured at the nanoscale and on 1st January 2017 for preparations containing a substance or substances manufactured at the nanoscale. We provide here an overview of this future Belgian nano register and some suggestions to be ready for the 2016 and 2017 deadlines.

Posted: Sep 3rd, 2014

An all-carbon optical diode for photonic computing

doped_grapheneResearchers have demonstrated the experimental realization of the first all-carbon optical diode that is ready for scalable integration along with being inherently broadband in operation with no restrictions on polarization or phase-matching criteria. As they show, harnessing the optical properties of graphene-based materials offers an opportunity to create the all-photonic analogs of diodes, transistors, and photonic logic gates that will one day enable construction of the first all-photonic computer.

Posted: Sep 1st, 2014

Using nanotechnology to regulate gene expression at the transcriptional level

nanoparticleGene transcription is tightly regulated by proteins called transcription factors. These transcription factor (TF) proteins are master regulators of transcriptional activity and gene expression. Transcription factors are responsible for transcribing the correct genes and therefore for producing the right quantity of proteins. TF-based gene regulation is a promising approach for many biological applications, however, several limitations hinder the full potential of TFs. To overcome these problems, an international team of researchers has developed an artificial, nanoparticle-based transcription factor, termed NanoScript, which is designed to mimic the structure and function of TFs.

Posted: Aug 28th, 2014

Nanotechnology in agriculture

agricultureNanotechnology applications are currently being researched, tested and in some cases already applied across the entire spectrum of food technology, from agriculture to food processing, packaging and food supplements. Specifically in agriculture, technical innovation is of importance with regard to addressing global challenges such as population growth, climate change and the limited availability of important plant nutrients. Nanotechnology applied to agricultural production could play a fundamental role for this purpose and research on agricultural applications is ongoing for largely a decade by now.

Posted: Aug 25th, 2014

How to identify nanomaterials in food

applesNanotechnology, specifically nanomaterial engineering, has begun to find applications in agriculture and the food industry. Some nanomaterials have unique physicochemical properties that can be exploited for beneficial effects on foods, leading to increased shelf life, enhanced flavor release, and increased absorption of nutrients and other bioactive components. The ability to detect and to measure a given nanomaterial at key time points in the food lifecycle is critical for estimating the nanoscale properties of interest that dictate manufacturing consistency and safety, as well as understanding potential beneficial or adverse effects from food intercalation.

Posted: Aug 22nd, 2014

Turning nanoporous metal into a nanopump by electrically controlling surface tension

nanopumpThe capillarity-driven uptake of liquids by porous solids can be experienced in daily life, e.g., when a sponge or fabric absorbs water. This spontaneous imbibition or capillary rise phenomenon is also one of the most vivid manifestations of the capillarity of liquids: surface tension. Researchers have now demonstrated a strategy for achieving control over the imbibition kinetics. They show that this process can be switched on and off reversibly when nanoporous gold takes the role of the sponge and an electric potential is used to control the surface tension.

Posted: Aug 20th, 2014