Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 17 - 24 of 2008 in category (newest first):


Using graphene as transparent electrodes and alignment layers for liquid crystal devices

liquid_crystalsIn conventional liquid crystal displays (LCD), the liquid crystal (LC) material is contained in conventional LC cells, where the polyimide layers are used to align the LC homogeneously in the cell, and the transmissive indium tin oxide (ITO) electrodes are used to apply the electric field to reorient the LC along the field. Now, researchers have experimentally demonstrated that monolayer graphene films on the two glass substrates can function concurrently as the LC alignment layers and the transparent electrodes to fabricate an LC cell, without using the conventional polyimide and ITO substrates.

Posted: Jul 11th, 2017

Controlling multi-modal nanolasing with plasmonic superlattices

plasmonicsMulti-modal lasers can emit at different wavelengths simultaneously and are important for applications ranging from multiplexed signal processing to multi-color biomedical imaging. To achieve multi-wavelength capabilities, however, the single-color lasers need to be operated as an array of lasers, which dramatically increases the unit cost and precludes their integration with compact photonic devices. Researchers now have demonstrated that multi-modal lasing with control over the different colors can be achieved in a single device.

Posted: Jul 10th, 2017

Flexible sensors

flexible_sensorFlexible sensors hold great promise for various innovative applications in fields such as medicine, healthcare, environment, and biology. Over the past decade, the development of flexible and stretchable sensors for various functions has been accelerated by rapid advances in materials, processing methods, and platforms. For practical applications, new expectations are arising in the pursuit of highly economical, multifunctional, biocompatible flexible sensors.

Posted: Jul 7th, 2017

Portable energy harvester for self-powered devices

smartphone_pouchWith a focus on using eco-friendly materials such as fabrics worn in daily life (nylon, jeans, cotton, etc.), researchers have developed and demonstrated an innovative product for scavenging biomechanical energy. The team's Smart Mobile Pouch Triboelectric Nanogenerator (SMP-TENG) can generate electricity from lateral sliding and vertical contact and separation with freestanding fabrics; it also can serve as a self-powered emergency flashlight and self-powered pedometer.

Posted: Jul 6th, 2017

Integrating biomolecules with metal-organic frameworks

metal-organic_frameworkWith their special structure and large surface area, MOFs open up new opportunities in drug delivery. The ability to exchange the metal centers and organic linkers even provide an extensive library of MOF materials. As a result, the integration of small guest molecules within the MOF pores, such as small molecule drugs and biomolecules, have shown promise for delivery applications to treat diseases. A recent review article discusses current proceedings on integrating diverse biomolecules within MOFs.

Posted: Jul 4th, 2017

New insights into the electrical properties of liquid crystals doped with nanoparticles

LCD_displaysMany of the electronic devices we use in our daily life rely on liquid crystal display (LCD) technologies. LCDs get their name from the special liquid crystal solution that is contained between two thin glass plates inside the display. An electric field applied across the liquid crystal layer changes optical properties of the liquid crystals thus enabling their use in displays. A new paper reports several interesting size effects including monotonous and non-monotonous dependence of the total concentration of mobile ions in liquid crystals on the thickness of the cell and/or on the concentration of nanoparticles.

Posted: Jun 30th, 2017

Self-organizing graphene nanodots

dots_on_grapheneThe ultimate challenge of nanotechnology is to control the structure of matter with atomic precision. The better we are at shaping and structuring material on a small scale, the more powerful technology we can dream of. Unfortunately, the atomic scale is entirely out of range for conventional patterning. Researchers now report that they have achieved nanoscale self-assembly within a two-dimensional layer. Dosing of ethylene and borazine near a hot iridium surface, leads for self-organising of a two-dimensional superlattice of graphene dots.

Posted: Jun 29th, 2017

Plasmonic nanosensor gels to detect therapeutic levels of radiation

hydrogelIonizing radiation (e.g. X-rays) is widely used in the treatment of cancer, but can cause significant damage to healthy cells. The overarching goal of radiotherapy is to safely, accurately and efficiently deliver ionizing radiation in order to treat diseases, typically cancer. A novel sensor technology can help medical physicists and oncologists effectively plan fractionated radiotherapy in the clinic, reduce accidental overexposures, and reduce radiation-induced toxicity.

Posted: Jun 29th, 2017