Open menu

Emerging Technologies News

  • Nanotechnology
  • Robotics
  • Space
  • Biotechnology
  • CleanTech
  • 3D Printing
    ‚Äč

Nanotechnology Spotlights

Controlling light and heat on the nanoscale with hybrid optical-thermal antennas

nanoantennaLocalization of photons to nanoscale volumes with the aid of plasmonic nanoantennas opened new horizons in bio(chemical) sensing and nanoscale imaging. However, plasmon resonances are short-lived, and the photon energy quickly dissipates as heat, creating temperature gradients on plasmonic chips. In new work, researchers have proposed design rules to engineer hybrid optical-thermal antennas that offer multiple functionalities...

Posted: Aug 24, 2016

Read more

Thermoelectric paper devices utilize waste heat to power electronics and sensors (w/video)

thermoelectric_deviceThe fact that temperature differentials (heat) are ubiquitously present in our environment makes thermoelectric energy harvesting a highly attractive research field. New work highlights the fabrication of flexible thermoelectric materials and modules by merging colloidal nanomaterials (quantum dots) that can be tuned for efficient heat-to-electricity energy conversion with naturally abundant cellulose paper that are low in...

Posted: Aug 23, 2016

Read more

Naked-eye plasmonic colorimetry and SERS dual-mode sensor (w/video)

FlexBrite_sensorPoint-of-care diagnostics, food safety screening, and environmental monitoring will massively benefit from the label-free, inexpensive, rapid, handheld sensor devices that are currently under development. To date, there has been a lot of work reported on either SERS or plasmonic sensing but very few have reported sensing with the same device for both SERS and plasmonics, let alone plasmonic colorimetry naked-eye sensing. For...

Posted: Aug 19, 2016

Read more

2D electrode materials enable high performance sodium ion full cells

batterySodium-ion batteries (SIBs) represent an attractive alternative to lithium-ion batteries, owing to the fact that sodium resources are practically inexhaustible and evenly distributed around the world while the ion insertion chemistry is largely identical to that of lithium. Researchers have now rationally designed and fabricated a sodium ion full battery where both of the cathode and anode materials possessed very unique two-dimensional...

Posted: Aug 17, 2016

Read more

Moire Nanosphere Lithography allows fabrication of large-area tunable graphene metasurfaces

graphene_moire_metasurfaceGraphene, one of the most exciting two-dimensional materials, has shown extraordinary optical properties due to strong surface plasmon polaritons supported by graphene nanostructure. Graphene metasurfaces show plasmonic resonance bands that can be tuned from mid-infrared to terahertz regime. These plasmonic devices can be used for biosensing, spectroscopy, light modulation and communication applications. Researchers now demonstrate...

Posted: Aug 16, 2016

Read more

Exploring applications of quasicrystals at small scales

nanopillarWhether it is possible to achieve high formability in quasicrystals and how quasicrystals are plastically deformed at room temperature have been long-standing questions since their discovery. In new work, an international group of researchers has found that a typically brittle quasicrystal exhibits superior ductility (ductility is a solid material's ability to deform under stress without fracture) at the sub-micrometer scales...

Posted: Aug 12, 2016

Read more

A nanotechnology perspective for manufacturing

nanomanufacturingThe entry of nanotechnology into manufacturing has been compared to the advent of earlier technologies that have profoundly affected modern societies, such as plastics, semiconductors, and even electricity. Applications of nanotechnology promise transformative improvements in materials performance and longevity for electronics, medicine, energy, construction, machine tools, agriculture, transportation, clothing, and other...

Posted: Aug 11, 2016

Read more

Material scientists' fascination with negative Poisson's ratio

auxetic_domePoisson's ratio describes the fundamental elasticity of any solid. Poisson's ratio has been a basic principle of engineering for more than 200 years as it allows engineers to identify how much a material can be compressed and stretched and how much pressure it will withstand, before it collapses. Materials with a negative Poisson's ratio are relatively rare and it has recently become popular in referring to them as metamaterials...

Posted: Aug 03, 2016

Read more
Read more nanotechnology spotlights