Open menu

Emerging Technologies News

  • Nanotechnology
  • Robotics
  • Space
  • Biotechnology
  • CleanTech
  • 3D Printing
    ‚Äč

Nanotechnology Spotlights

Record high sensitive graphene Hall sensors

graphene_sensorMagnetic field sensors are in very high demand for precise measurements of position, proximity and motion. The most commonly used Hall Effect devices are fabricated with silicon. The sensitivities of these sensors - voltage and current - depend on the device materials electronic properties such as charge carrier mobility and density. However, for futuristic advanced applications higher sensitivity Hall sensors are required...

Posted: May 21, 2015

Read more

Wearing single-walled carbon nanotube electronics on your skin

flexible_electronicsResearchers present materials and device design/fabrication strategies for an array of highly stable and uniform SWCNT-based stretchable electronic devices consisting of capacitors, charge-trap floating-gate memory units, and logic gates (inverters and NAND/NOR gates). The researchers' detailed material, electrical, and mechanical characterizations and theoretical analysis in mechanics provide useful insights in the design...

Posted: May 13, 2015

Read more

How to make nanofibers using a fridge magnet (w/video)

nanowire_fabricationThe most common method for making nanofibers employs electrospinning that uses an electrical charge to draw nanofibers from a polymeric solution. This technique utilizes large voltages and is strongly influenced by the dielectric properties of the material. It is also impossible to electrospin many biopolymers without blending with another polymer. Addressing these drawbacks, a team of researchers report a new method - magnetospinning...

Posted: May 11, 2015

Read more

Novel nanotube tunnel FET architecture

transistorClassical semiconductor physics suggests that a single charge transport CMOS device cannot achieve ultra-high-performance and ultra-low-standby-power at the same time. Nanoelectronics researchers are trying to design devices that hit the 'sweet spot', i.e. where a charge transport device can provide its highest performance at its lowest power consumption, especially in its 'off' state. In new work, researchers show a unique...

Posted: May 07, 2015

Read more

Snail-inspired nanosensor detects and maps mRNA in living cells

snailPresently, several techniques for detecting mRNAs are available,which include in situ hybridization and polymerase chain reaction. However, these single-point and end-point techniques require the killing of the cells and are thus unable to capture the expression of mRNA in real time and locality with high precision. In new work, scientists describe a new way of preparing functional DNA nanostructures that can provide accurate...

Posted: May 06, 2015

Read more

Improving the energy storage in graphene with defects

graphene_defectsCounter intuitive to our idea of 'perfection equals best performance', researchers have shown that defects in nanocarbons could provide a breakthrough for increasing the quantum capacitance. By subjecting graphene layers to a reactive-ion etching process, the team has poked holes into graphene to create holey graphene, which can change the microscopic distribution of electrons and thereby increase the quantum capacitance of...

Posted: May 05, 2015

Read more

Design of ultra-strong and ultra-pure red upconversion materials for biomedical applications

upconversionUpconversion luminesce materials are promising for widespread application ranging from optical devices to biodetection and cancer therapy, the near-infrared light excited upconversion materials are attracting much research attention. Researchers have achieved an ultra-strong and ultra-pure red upconversion in erbium and ytterbium co-doped lutetium oxyfluorides through size and morphology control. These nanoparticles, with...

Posted: May 04, 2015

Read more

3D-printed graphene for electronic and biomedical applications

3D-printed_grapheneFrom a 3D printing perspective, graphene has been previously incorporated into 3D printed materials, but most of these constructs comprise no greater than about 20 volume % of the total solid of the composite, resulting in electrical properties that are significantly less than what has been achieced in new work. Here, researchers show that high volume fraction graphene composite constructs can be formed from an easily extrudable...

Posted: Apr 28, 2015

Read more
Read more nanotechnology spotlights