Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1409 - 1416 of 2783 in category All (newest first):

 

Sneaking drugs into cancer cells with carbon nanotubes

carbon_nanotubesThe ideal drug carrier may be something out of science fiction. In principle, it is injected into the body and transports itself to the correct target, such as a tumor, and delivers the required dose at this target. This idealized concept was first proposed by Paul Ehrlich at the beginning of the 20th century and was nicknamed the 'magic bullet' concept. With the advent of nanotechnology and nanomedicine this dream is rapidly becoming a reality. Researchers have already demonstrated that unctionalized carbon nanotubes (CNTs) might be able to target specific cells, become ingested, and then release their contents in response to a chemical trigger. A group of researchers has now essentially achieved this goal. They have encapsulated drugs inside carbon nanotubes for drug delivery and shown that these drugs can be released 'on command' by inductive heating with an external alternating current or pulsed magnetic field.

Oct 30th, 2012

High-tech band-aids

nanolayersIn order to fabricate stimuli-responsive materials, researchers have shown a lot of interest in asymmetric materials such as modulated gels which consist of a controlled layer that is responsive to an environmental stimuli and a nonresponsive substrate layer. And while much effort has gone into creating free-standing films through layer-by-layer (LbL) assembly, relatively little attention has been paid to the asymmetric properties or functionalization of the two surfaces of such free-standing layer-by-layer films. In new work, researchers have now reported the fabrication of asymmetric free-standing layer-by-layer film with asymmetric wettability - one surface is superhydrophobic and the other one is hydrophilic. The superhydrophobic side is water-repellent while the hydrophilic side can absorb/desorb water easily.

Oct 29th, 2012

Graphene appears to be the most effective material for EMI shielding

grapheneSensitive electronic devices like cell phones and computers require shielding from electromagnetic interference (EMI). Such shielding - which must be electrically conductive - has traditionally been made of metal, which poses a weight problem in the push to miniaturize and lighten electronics. Previous research has already demonstrated that ultra-lightweight carbon nanostructure-based nanocomposite materials outperform conventional metal shielding due to their light weight, resistance to corrosion, flexibility, and processing advantages. In new work, scientists in Korea have now demonstrated that single-layer graphene is an excellent choice of material for high-performance EMI shielding. They found that CVD-synthesized graphene shows more than seven times greater EMI shielding effectiveness (in terms of dB) than gold film of the same thickness.

Oct 25th, 2012

Nanoscale imaging the cross section of a drop sitting on a surface

nanoscale_imagingNanostructured surfaces with special wetting properties can not only efficiently repel or attract liquids like water and oils but can also prevent formation of biofilms, ice, and other detrimental crystals. Such super- and ultrahydrophobic surfaces also hold the promise of significantly improving performance of condensers, which could boost the efficiency of most power plants in the world. A critical part of designing such surfaces is 'seeing' how water and other liquids interact when in contact with them. Since these surfaces are made of nanostructures, scientists need to use an electron microscope to image these interactions. In new work, researchers have developed a method for directly imaging such interfacial regions with previously unattainable nanoscale resolution.

Oct 24th, 2012

NASA and nanotechnology

spaceA new report, which reviews the history of nanotechnology research and development at NASA over the past 15 years, shows that NASA is the only U.S. federal agency to scale back investment in this area. The study argues that nanotechnology has the proven capability of revolutionizing most areas of technology that will be critical to NASA's future missions: The agency needs a bolder plan for R+D to match the requirements of those missions and to recapture its place at the forefront of nanotechnology. But it's not as if NASA doesn't have any ideas as to how nanotechnologies could be used to advance space technologies. In 2010, the agency drafted a 20-year Nanotechnology Roadmap as part of its integrated Space Technology Roadmap. According to this document, nanotechnology can have a broad impact on NASA missions.

Oct 23rd, 2012

Towards smart plasmonics

plasmonicsBy exploiting the outstanding properties of self-organizing materials, a team of Italian scientists has investigated a new way to build a bridge between two branches of physics: 'hard matter' and 'soft matter'. This allows researchers to address specific issues towards the realization of active-plasmonics devices, where the plasmonic resonance of gold nanoparticles can be finely controlled by means of external perturbations (electrical field, optical field, temperature). In place of a static approach - e.g. varying particles size, materials, etc. - the researchers used liquid crystals as active surrounding medium. This approach represents a 'scientific wedding' between the fascinating worlds of soft matter and plasmonics worlds.

Oct 22nd, 2012

Assembling functional nanowire yarns with light

nanowire_yarnNanoscale materials like quantum dots, carbon nanotubes, graphene, or nanowires, have intriguing properties, but unless they can be assembled in to larger structures it is difficult to take advantage of these properties. Figuring out how to assemble nanostructures into functional macroscale assemblies is one of the key challenges that nanoscientists around the world are faced with. In the area of nanowires, this has led to researchers exploring various nanowire assembly techniques ranging from Langmuir Blodgett alignment to electrospinning. Researchers have now developed a novel approach for assembling nanowires into macroscopic yarns that consist of millions of nanowires bundled together. The team found that light can be used to charge inorganic semiconducting nanowires. Once charged, the nanowires can be manipulated with electric fields.

Oct 18th, 2012

E-beam 'tweezers' allow precise manipulation of single nanoparticles (w/video)

e-beam_tweezerThe idea of using laser light to trap or levitate small particles goes back to the pioneering work by Arthur Ashkin of Bell Laboratories in the 1970s and 1980s. Ashkin found that radiation pressure - the ability of light to exert pressure to move small objects - could be harnessed to constrain small particles. This discovery has since formed the basis for scientific advances such as the development of optical tweezers, which are frequently used to control the motion of small biological objects. However, optical trapping of nanoparticles remains a challenging task because the forces are often too small when the sizes of the objects are reduced to the nanometer scale. New findings from scientists at Lawrence Berkeley National Laboratory and National University of Singapore fill a gap and also open the door to new discoveries by demonstrating trapping and manipulating nanometer size particles using an electron beam instead of optical forces. It could also lead to new force spectroscopy where nanostructures can be assembled one nanoparticle at a time.

Oct 16th, 2012