Showing Spotlights 521 - 528 of 561 in category All (newest first):
Colloidal crystals constructed by monodispersed microspheres packed in ordered arrays represent a new class of advanced materials that are useful in many areas. For example, due to their novel light diffraction and photonic bandgap properties, colloidal crystals are promising elements in the fabrication of devices such as optical filters and switches, chemical and biochemical sensors, and photonic chips. Various self-assembly techniques have been developed to form colloidal crystals on different substrates, including the flow-cell methods, vertical deposition, micromolding in capillaries and so on. Although existing methods can provide colloidal crystals of different structures and quality, efficient approaches to high stability and large scale colloidal crystals are increasingly attracting attention. Generating ordered microstructures in the colloidal crystal films and colloidal crystals with different structures and configurations are particularly important in the fabrication of optical devices.
Sep 8th, 2006
While growth processes of nanostructures are well understood, the stability of artificial nanostructures has not been thoroughly investigated. Fully understanding the fluctuations of nanostructures and their interactions with their surroundings is essential in order to achieve complete shape control of nanostructures. In recent work, French scientists address the morphogenesis, instability and catastrophic collapse of nanostructures.
Sep 7th, 2006
Nanocrystal engineering learned from biominerals holds promises for the development in biology, chemistry, and materials science. Biominerals have inspired novel bottom-up approaches to the development of functional materials for some time now. The morphology, crystallographic orientation, incorporated organic molecules, and emergent properties of carbonate-based biominerals already have been demonstrated. Typical examples of these biominerals are certain layers of seashells, corals, and eggshells. New research now clarifies that biominerals are oriented architectures of calcium carbonate nanocrystals 20?100 nm in size with incorporation of biopolymers.
Sep 6th, 2006
Recent developments in DNA-based nanotechnology have shown the suitability of this novel assembly method for constructing useful nanostructures. DNA molecules can serve as precisely controllable and programmable scaffolds for organizing functional nanomaterials in the design, fabrication, and characterization of nanometer scale electronic devices and sensors. DNA-templated metallic nanowires are such an example and over the past few years DNA scaffolds have been metallized with silver, gold, palladium, platinum and copper. DNA-based fabrication methods could ultimately lead to naturally bio-compatible nanodevices.
Aug 31st, 2006
Microscale reactor technology has tremendous advantage over conventional macro-scale or batch chemical processes, and offers versatility for a wide range of applications including chemical analyses, drug discovery, radiotracer synthesis, and the fabrication of engineered nanomaterials. Attention is currently focused on developing scaleable process regimes, using an approach engineers call numbering up. Microreactor technology is defined by a series of interconnected, functionally distinct channels formed on a planar surface, utilizing either hydrodynamic or (EOF) for pumping, with channel dimensions typically between 10-300 microns.
Aug 29th, 2006
Among many nanomaterials with distinct geometric shapes, spheres and cubes are the two simplest forms, yet they possess the highest symmetries. One of the obvious geometric merits of this class of materials is their low resistivity under fluidic conditions, as they can be essentially considered as zero-dimensional entities when their size is trimmed down to the nanoscale regime. So far, most hollow interiors of nanomaterials are created by template-methods. Researchers in Singapore for the first time demonstrated that nanostructured polyhedrons of functional materials with desired interiors can be synthesized template-free through a simple hydrothermal method.
Aug 25th, 2006
Conventionally, the fabrication of thin film nanostructures is primarily done by using selective etching or templating growth on a prepatterned resist and then performing lift-off. The solvents used in developing resist are typically toxic and add to the cost of lithographic processing. Recently, many environmentally friendly lithographic processes have been designed using either a water-based solution or supercritical carbon dioxide to develop the resist. A novel pure water developable spin-coatable lanthanum strontium manganese oxide (LSMO) resist has been developed by scientists in Taiwan. The use of pure water instead of organic or alkaline solvents would undoubtedly be not only environmentally desirable but also could greatly simplify the imaging process.
Aug 22nd, 2006
Current production methods for carbon nanotubes result in units with different diameter, length, chirality and electronic properties, all packed together in bundles, and often blended with some amount of amorphous carbon. The separation of nanotubes according to desired properties remains a technical challenge. Especially single-walled carbon nanotube (SWCNT) sorting is a challenge because the composition and chemical properties of SWCNTs of different types are very similar, making conventional separation techniques inefficient.
Aug 21st, 2006