Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 9 - 16 of 423 in category Fabrication Technologies and Devices (newest first):


A facile process for the vertical orientation of block copolymer nanodomains

nanofabricationResearchers introduced a novel self-neutralization concept by designing molecular architecture of a block copolymer to develop vertically oriented lamellar or cylindrical nanodomains without pre- or post-treatments. Previously, in order to induce vertical orientation of block copolymer nanodomains in the film state, diverse pre- or post-treatments to neutralize the preferential affinity between a substrate and each block of the block copolymer need to be introduced

Posted: Aug 3rd, 2015

Nanoelectronics on textile, paper, wood and stone

flexible_electronicsResearchers have developed a simple double-transfer printing technique that allows them to integrate high performing electronic devices - featuring state-of-the-art, non-planar, sub-20nm FinFET devices - fabricated on novel flexible thin silicon sheets with several kinds of materials exhibiting complex, asymmetric surfaces including textile, paper, wood, stone, and vinyl. This process utilizes soft materials to integrate nonplanar FinFET and planar traditional MOSFET devices onto various wavy, curvilinear, irregular, or asymmetric surfaces.

Posted: Jul 9th, 2015

Flexible FeRAM fabricated with CMOS-compatible approach

flexible_electronicsResearchers have demonstrated the fabrication flexible ferroelectric random access memory (FeRAM) devices using state-of-the-art CMOS processes (sputtering, photolithography, and reactive ion etching). This bridges the existing gap between rigid inflexible semiconductor high performance, integration density, yield, and reliable electronics and highly flexible polymer/hybrid materials based relatively low performance electronics. This enables combining the best of two worlds to obtain flexible high performance electronics.

Posted: Jul 1st, 2015

Trapping individual metal nanoparticles in air

trapped_nanoparticlesWhile there is a great deal of knowledge on optical manipulation of metallic nanoparticles in liquids, aerosol trapping of metallic nanoparticles is essentially unexplored. In general, very little is known about optical manipulation of any type of particle in air, where the physics appear to be rather different than in water. The just demonstrated ability to manipulate and study individual metallic or semiconductor nanostructures in air or vacuum opens up many exciting opportunities.

Posted: Jun 30th, 2015

3D-shaping graphene - swell it, shrink it, adapt it

nanostructureGetting from 2D to 3D has been quite a challenge for the graphene community. The transfer of two-dimensional graphene onto three-dimensional surfaces has proven to be difficult due to the fractures in graphene caused by local stresses. New research is bound to change that. Scientists have demonstrated graphene integration into a variety of different microstructured geometries - pyramids, pillars, domes, inverted pyramids, as well as the integration of hybrid structure of graphene decorated with gold nanoparticles on 3D structures.

Posted: Jun 29th, 2015

Bioinspired nanofur could significantly reduce underwater drag of marine vessels

nanofurObservations made on a fern and an insect have led researchers to develop a nanofur structure that significantly reduces fluid drag. Both have surfaces covered by high density hairs which allow them to keep an air layer under water. This enables the bug to move nimbly and swiftly through the water by reducing the drag on its surface. Based on these observations, researchers have developed a very inexpensive, highly scalable method to produce a superhydrophobic, air retaining biomimetic surface - a 'nanofur' - which shows not only a high long-term stability but also a high resistance against additional applied pressure.

Posted: Jun 22nd, 2015

Novel nanosphere lithography to fabricate tunable plasmonic metasurfaces

nanosphere_lithographyIn conventional nanosphere lithography, the nanosphere configurations in the layers are determined by a spontaneous self-assembly process. Therefore, the final configurations are limited to those with or close to the minimal free energy giving rise to very simple patterns. Researchers have now managed to circumvent this thermodynamical restriction by putting the monolayers in a confined environment and constructing the bilayers with sequential stacking, both of which are critical for the formation of moire patterns.

Posted: Jun 18th, 2015

Synthesizing a boron-rich cousin of graphene

nanosheetsWhile exploring the possibility to realize graphene-like nanostructures of boron, carbon's neighbor in the periodic table, a team of chemical engineers has discovered an entirely new family of 2-D compounds. They demonstrated exfoliation of a well-known superconductor magnesium diboride, a layered material that consists Mg atoms sandwiched in between born honeycomb planes. These nanosheets can be an order of magnitude more transparent compared to their cousin graphene.

Posted: Jun 17th, 2015