Open menu

Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 609 - 616 of 2140 in category (newest first):


In situ monitoring catalytic processes for ultrahigh purity carbon nanotubes

carbon_nanotubesCatalysis is one of the most important routines for the production of nanomaterials. The catalysts that are used in these processes play a vital role for the controllable fabrication of nanomaterials with anticipated structures. However, carbon nanotubes grown through routine catalytic chemical vapor deposition have always shown non-carbon impurities. Effective purification of SWCNTs has therefore attracted significant attention from researchers around the world in order to improve the performance of carbon nanotubes, especially in energy storage systems.

Posted: Oct 30th, 2013

Fabricating e-textiles with reduced graphene oxide

electronic_textileThe future of your clothes will be electronic. Not only will electronic devices be embedded on textile substrates, but an electronics device or system could become the fabric itself. These electronic textiles will have the revolutionary ability to sense, compute, store, emit, and move - think biomedical monitoring functions or new man-machine interfaces, not to mention game controllers - while leveraging an existing low-cost textile manufacturing infrastructure. In new work, a group of scientists from Korea have now reported novel method for the fabrication of conductive, flexible, and durable graphene textiles wrapped with reduced graphene oxide.

Posted: Oct 29th, 2013

Automated and scalable inline two-stage synthesis process for high quality colloidal quantum dots

quantum_dotsColloidal quantum dot nanocrystals are attractive materials for optoelectronics, sensing devices and third generation photovoltaics. Researchers have now developed an automated, scalable, in-line synthesis methodology of high-quality colloidal quantum dots based on a flow-reactor with two temperature-stages of narrow channel coils. The flow-reactor methodology not only enables easy scalability and cheap production, but also affords rapid screening of parameters, automation, and low reagent consumption during optimization.

Posted: Oct 28th, 2013

Sticker-type organic memory that is rewritable, transferable, and flexible

stickyFuture electronics will look nothing like today's rigid boxes, be they the latest smartphones, tablets, or computers. Instead, they will be extremely light, soft, flexible, transparent, and integrated into everyday objects like paper or fabrics. These advanced electronic systems will be fabricated on soft substrates by integrating multiple crucial components such as logic and memory devices as well as their power supply. Researchers have now successfully demonstrated a rewritable, transferable, and flexible sticker-type organic memory on arbitrary nonconventional substrates through a simple, low-temperature and cost-effective one-step methodology.

Posted: Oct 25th, 2013

Microfabrication inspired by Lego

silicon_blocksFor microprobes, both the pick-up and placement are challenging due to the adherent forces. For microgrippers, the pick-up is easier and secure due to the gripping motion, but the placement is still difficult. When a microgripper opens its gripping fingers, the microobject still adheres to one of the fingers by strong adhesion forces. Owing to force scaling laws, the adhesion forces at the microscale - capillary forces, van der Waals forces, and electrostatic forces - dominate gravity. To overcome these challenges, researchers have developed a manufacturing route to three dimensional silicon microsystems, which they termed 'micro-masonry', based on individual manipulation.

Posted: Oct 24th, 2013

Graphene controls color of nano-sandwiches

gold_nanosandwichTechnology in our lives is ever more based on miniaturized structures that deliver higher performance devices taking up a fraction of the space compared to several years ago. But seeing what is going on at these tiny length scales comparable to molecules is very hard. Normally light cannot be used since it is not focused tightly enough, limited by the optical wavelength which is much larger than the structures we want to observe. New research suggests that tightly squeezing light into small gaps in metallic nanostructures now provides a way to circumvent this problem.

Posted: Oct 22nd, 2013

Nanopore sensor could advance epigenetic cancer biomarker detection

nanoporeEpigenetic mechanisms are chemical changes in DNA that do not alter the actual genetic code but can influence the expression of genes, and can be passed on when cells reproduce. One of the most important is DNA methylation, where methyl groups - small structures of carbon and hydrogen - are appended to specific locations on a DNA strand. Recently, both biological and synthetic nanopores have been proposed for DNA methylation detection. In new work, researchers employed protein nanopores to investigate a novel metal ion-bridged DNA interstrand lock, and explore its potential in location-specific methylation detection.

Posted: Oct 21st, 2013

Nanocoated fabric is super-repellent and self-healing

repellent_fabricAny coating, no matter how durable, is susceptible to physical and chemical damages. Self-healing, which has become a popular theme in the field of material science, can endow coatings with ability to recover their surface properties after being damaged. New work demonstrates that a superamphiphobic fabric with remarkable multi self-healing ability against both physical and chemical damages and exceptional liquid-repellency to low surface-tension liquids including ethanol can be achieved through a two-step wet-chemistry coating technique.

Posted: Oct 18th, 2013