Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 17 - 24 of 280 in category Carbon Nanotubes (newest first):

 

Carbon nanotubes lead to strikingly large contrasts in the thermal conductivity of phase change materials

carbon_nanotubesLiquid-solid phase transitions can be an attractive route for the temperature regulation of electrical and/or thermal properties because of the availability of materials with a wide range of phase transition temperatures. Achieving different magnitudes of enhancement in solid and liquid state is difficult to explain from a theoretical point of view. When researchers made similar experiments using single-walled carbon nanotubes as the additives, they noticed much higher thermal conductivity improvement than the evidence available in existing literature. This is something they never anticipated to happen and they were quite surprised with the enhancement seen.

Posted: Jul 17th, 2013

Researchers grow half-meter long carbon nanotubes

carbon_nanotubesOne of the problems researchers have to struggle with in exploiting the extraordinary mechanical properties of carbon nanotubes (CNTs), for instance for building superstrong fibers or T-shirt-thin ballistic armors, has been the question of how to synthesis CNTs with macroscale lengths and without decreasing areal density. A crucial step for realizing such applications will be the ability to mass-produce carbon nanotubes with meter-scale or even kilometer-scale length and excellent mechanical properties. In new work, a team of researchers from Tsinghua University in Beijing have found that the growth of ultralong carbon nanotubes could be described using Schulz-Flory distribution, which is very common in polymer science.

Posted: Jul 15th, 2013

Cheap nanotechnology paper-based gas sensors

Nanotechnology-enabled, paper-based sensors promise to be simple, portable, disposable, low power-consuming, and inexpensive sensor devices that will find ubiquitous use in medicine, detecting explosives, toxic substances, and environmental studies. Since monitoring needs for environmental, security, and medical purposes are growing fast, the demand for sensors that are low cost, low power-consuming, high sensitivity, and selective detection is increasing as well. Paper has been recognized as a particular class of supporting matrix for accommodating sensing materials. A team of Chinese researchers has now developed low-cost gas sensors by trapping single-walled carbon nanotubes in paper and demonstrated their effectiveness by testing it on ammonia.

Posted: Jun 10th, 2013

Flexible, carbon-based nanotechnology thin-film transistors

flexible_electronicsFlexible electronics are all the rage these days. They promise an entirely new design tool like for instance, tiny smartphones that wrap around our wrists, and flexible displays that fold out as newspapers or large as a television; or photovoltaic cells and reconfigurable antennas that conform to the roofs and trunks of our cars. This article reviews the progress in single-walled CNT and graphene-based flexible thin-film transistors related to material preparation, fabrication technique and transistor performance control, in order to clarify the possible scale-up methods by which mature and realistic flexible electronics could be achieved.

Posted: Jun 5th, 2013

Nanotechnology in sports equipment: The game changer

sports_equipmentThe degree of competitiveness in sports has been remarkably impacted by nanotechnology like any other innovative idea in materials science. Within the niche of sport equipments, nanotechnology offers a number of advantages and immense potential to improve sporting equipments making athletes safer, comfortble and more agile than ever. Baseball bats, tennis and badminton racquets, hockey sticks, racing bicycles, golf balls/clubs, skis, fly-fishing rods, archery arrows, etc. are some of the sporting equipments, whose performance and durability are being improved with the help of nanotechnology. Nanomaterials such as carbon nanotubes, silica nanoparticles, nanoclays fullerenes, etc. are being incorporated into various sports equipment to improve the performance of athletes as well as equipments.

Posted: May 27th, 2013

Carbon-based nanotechnology materials for biomedical engineering

graphene-DNACarbon nanomaterials such as nanotubes or graphene not only are widely researched for their potential uses in industrial applications, they also are of great interest to biomedical engineers working on nanotechnology applications. These researchers found that incorporating carbon-based nanomaterials is effective not only as injectable nanoscale devices but also as components to enhance the function of existing biomaterials significantly. A recent article highlights different types of carbon-based nanomaterials currently used in biomedical applications.

Posted: Apr 25th, 2013

D-carbon - a new carbon allotrope with extremely high gas adsorption and mechanical properties

D-carbonCarbon is the fourth-most-abundant element in the universe and, depending on the arrangements of carbon atoms, takes on a wide variety of forms, called allotropes. Carbon allotropes exhibit unique properties of strength and electrical conductivity. Solid carbon at room temperature has two classical structures: diamond and graphite. In 1985 the discovery of the existence of a third and new carbon allotrope containing sixty perfectly symmetrically arranged carbon atoms (C60) meant a major breakthrough and opened a novel field of carbon nanochemistry. Then, in 1991, carbon nanotubes were discovered and graphene in 2004. Now, a research group in China has designed a novel carbon allotrope they've named D-carbon.

Posted: Mar 15th, 2013

Nanopaper transistors for the coming age of flexible and transparent electronics

transparent_electronicsThe coming age of wearable, highly flexible and transparent electronic devices will rely on essentially invisible electronic and optoelectronic circuits. In order to have close to invisible circuitry, one must have optically transparent thin-film transistors. In order to have flexibility, one needs bendable substrates. Researchers have now now fabricated transistors on specially designed nanopaper. They show that flexible organic field-effect transistors (OFETs) with high transparency and excellent mechanical properties can be fabricated on tailored nanopapers.

Posted: Feb 21st, 2013