Nanotechnology Spotlight Articles – Category Solar Cells, page 1 | Nanowerk

Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1 - 8 of 65 in category Solar Cells (newest first):


Enhanced light absorption in silicon by phase engineering

solar-absorptionNew research shows the formation of large-area R8-Si within the top n-layer of the p-n junction Si solar cell using spherical nanoindentation, and experimentally measured optical properties of R8-Si to demonstrate ten times enhancement in its photocurrent density. After theoretical studies in 2008 indicated that rhombohedral phase (R8) of silicon, which is stable at ambient temperature, has interesting optoelectronic properties suitable for a solar absorber application, this is the first demonstration in experimental studies.

Apr 17th, 2020

Paving the way for inorganic perovskites' use in high-performance electronic applications

photodetectorNew work provides insight into the control over phase and ordering during halide perovskite epitaxial growth and expands the selection of photoactive materials for growing epitaxial halide perovskites that can be exploited in high-performance electronic applications. Hybrid organic-inorganic halide perovskite has attracted tremendous attention as an exceptional new class of semiconductors for solar harvesting, light emission, lasing and thin-film electronics. However, the toxicity of lead devices and lead manufacturing combined with the instability of organic components have been two key barriers to widespread application. Tin-based inorganic halide perovskites have been considered promising substitutes for their lead analogues.

Nov 7th, 2019

Polymer encapsulation shields perovskite nanocrystals from degradation

perovskite-nanocrystal-encapsulationDue to their fascinating optoelectronic properties, halide perovskites have attracted tremendous research interest as promising materials for photovoltaics, photodetectors, LEDs, and lasers. Researchers report report a strategy to synthesize perovskite nanocrystals using diblock copolymer micelles as a growth template. This work constitutes a new approach for synthesizing perovskite nanocrystals of controllable size and composition with vastly improved resistance to halide ion migration and environmentally induced degradation.

Aug 7th, 2019

Printing solar cells and batteries on paper

Over the past ten years, paper has emerged as a focus area for researchers developing innovative techniques for printed basic electronics components. The goal of this research is to replace plastic substrates with low-cost, versatile and sustainable materials. The main advantages of investing in paper for electronics and energy storage devices are the low cost of the technology; the potentiality to recover device components and recycle the substrate as well as the active materials; and the production of environmentally harmless and biocompatible devices.

Feb 7th, 2019

Graphene and other 2D materials for advanced solar cells

graphene_photovoltaicsDue to their excellent electron-transport properties and extremely high carrier mobility, graphene and other other direct bandgap monolayer materials such as transition-metal dichalcogenides (TMDCs) and black phosphorus show great potential to be used for low-cost, flexible, and highly efficient photovoltaic devices. A recent review provides a comprehensive overview on the current state-of-the-art of 2D-materials-based solar photovoltaics. It describes the recent progress made with graphene, graphene-based materials, and other 2D materials for solar photovoltaics, including silicon-based solar cells, and organic and perovskite solar cells.

Jan 7th, 2019

Tri-layer silicene may beat bulk GaAs as high-efficiency photovoltaic absorber

siliceneIn the past few years, monolayer and multilayer silicenes have been successfully grown on various metal substrates. Unfortunately, silicene on metal substrate generally exhibits metallic or semi-metallic character without a bandgap, and thus cannot be used as adsorption layer of photovoltaic materials. A new comprehensive investigation of multilayer silicene by means of ab initio swarm-intelligence structure-searching method predicts that tri-layer silicene is an ideal candidate for high-efficiency photovoltaic absorbers.

Oct 15th, 2018

The hidden talent of mushrooms for solar steam generation

solar_steam_generationSteam is important for desalination, hygiene systems, and sterilization; and in remote areas where the sun is the only source of energy, being able to generate steam with solar energy could be very useful. Researchers now have found that the mushroom structure can surprisingly benefit solar steam generation. The stipe of the mushroom can serve as efficient water supply path, meanwhile, due to the extreme small ratio of the areas of fibrous stipe and black pileus, only little heat (useless heat loss) conducted into water.

Jun 6th, 2017

Perovskite solar cells - a true alternative to silicon?

flexible_photovoltaicsThe growing need for 'green' energy sources combined with silicon solar cells' stagnating power conversion efficiencies have lead to a keen search for an alternative to silicon that would bring about a major change. Perovskite solar cell technology, boasting potential for high efficiency, low-cost scalable photovoltaic solar cells, may just be a suitable contender in this race. Perovskites, a class of materials that share a similar structure, display a myriad of exciting properties that position them as attractive candidates for enabling low-cost, efficient photovoltaics that could even be sprayed onto rooftops and various other surfaces.

Dec 1st, 2016