Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 97 - 104 of 2140 in category (newest first):


Fluorinated phosphorene: a new way of solving instability problems in phosphorene

phosphoreneRecently, a new member has been introduced to the family of two-dimensional (2D) materials: phosphorene. Phosphorene has attracted much attention because of its tunable direct band gap and superior carrier mobility, but unfortunately phosphorene is subjected to oxidation and degradation under ambient conditions. Now, researchers have reported a facile pathway in obtaining and stabilizing phosphorene through a one-step, ionic liquid-assisted electrochemical exfoliation and synchronous fluorination process. This strategy enabled a novel phosphorene derivative to be discovered - fluorinated phosphorene, which exhibits air-stable photo-thermal properties.

Mar 2nd, 2018

Controlled release of nanohydrogel from halloysite nanotubes

nanohydrogelA popular structure for the development of nanodelivery systems are hollow tubular nanoparticles. In new work, researchers show that a hydrogel can be confined within the cavity of halloysite nanotubes (HNTs) by means of an easy strategy. The alginate network inside the HNTs cavity can be triggered by chemical stimuli (by calcium chelators) altering the kinetics, which results in the release of the cargo. This shows that halloysite with tunable hydrophilic/hydrophobic interfaces can act as nanotemplate for the synthesis of drug delivery systems based on biopolymer hydrogels.

Mar 1st, 2018

Promising electrolyte structure designs for solid-state lithium-ion batteries

nanofillerFinding low-cost solid materials capable of efficiently and safely replacing liquid electrolytes in lithium-ion batteries has been a considerable research interest over the past years. Of the various types of solid electrolytes that have been developed so far, composite polymer electrolytes exhibit acceptable Li-ion conductivity due to the interaction between nanofillers and polymer. By fabricating a pre-percolated network of ceramic filler instead of distributing particles in polymer, a 3D interconnected ceramic framework provides continuous pathways for ion conduction. This novel method will help to develop composite materials in a different but much improved way than conventional particle distributions.

Feb 28th, 2018

Light-activated black phosphorus hydrogel releases cancer drugs

cancer_nanomedicineAs a new member of the two-dimensional (2D) nanomaterial family, black phosphorus (BP) has attracted considerable attention in biomedicine, due to its unique physicochemical properties as well as excellent biocompatibility. Researchers have now demonstrated a novel concept of light activation of BP hydrogel to release drugs for cancer therapy. This BP hydrogel is comprised of BP nanosheets as a photosensitizer and hydrogel as a hydrophilic container for drugs. After injection, these nanosheets convert light to thermal energy when exposed to laser irradiation, leading to heating of the hydrogel matrix.

Feb 27th, 2018

Back to the future: Belgian nanomaterials register retroactively amended

The Belgian federal government unnecessarily delayed the adoption of the Amending Royal Decree until December 2017 and published it only mid-January 2018. It creates legal uncertainty where it should have been avoided. The Belgian nanomaterials register symbolizes a Belgian exceptionalism in the small world of national nanomaterials registers. Unlike France, Denmark and Sweden, Belgium decided from the very beginning to have three different deadlines for substances, mixtures and articles.

Feb 26th, 2018

Molecular printing with light-actuated pens

molecular_printingThe past two decades have witnessed the evolution of advanced physical probe-based nanolithography techniques for molecular printing such as for instance Dip-Pen Nanolithography. Now, researchers have demonstrated, for the first time, photo-actuated polymer pens for molecular printing. This represents an important step in the field of scalable nanofabrication. It paves the way for dynamic actuation of individual pens, making it possible to realize patterning and printing molecules or other soft materials such as polymers or biomaterials at high resolution and low cost.

Feb 23rd, 2018

Why burn bagasse when you can 3D print its nanocellulose

3D-printingBagasse, a waste plant matter obtained by food industry processes such as sugarcane processing, has great potential as raw material for the production of cellulose nanofibrils (CNF) for a range of applications. Researchers now have developed a CNF ink from bagasse that has potential as component in bioinks for 3D printing. Bioinks are inks that contain living cells and that can be 3D printed in a cell-friendly manner, without compromising cell viability.

Feb 22nd, 2018

The ongoing development of DNA nanotechnology

DNA_nanotechnologyDNA, the fundamental building block of our genetic makeup, has become an intense nanotechnology research field. Nanotechnology researchers use it to create artificial rationally designed nanostructures for diverse applications in biology, chemistry, and physics. In a progress report, scientists focus on the different design paradigms (DNA origami and the related techniques are particularly emphasized), selected high-quality shapes, and the software that enable user-friendly design and fabrication of DNA nanoobjects.

Feb 20th, 2018