Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1209 - 1216 of 2140 in category (newest first):

 

Carbon nanotube/biopolymer composites show promise as artificial muscles

muscleThe development of artificial muscles is one of the key areas for bionic enhancements or replacements. The discovery of the electromechanical actuation properties of single-walled carbon nanotubes and the complex behavior of multi-walled carbon nanotubes has led to the development of various carbon nanotube actuators. Besides artificial muscles, potential applications include microelectro-mechanical systems (MEMS), biomimetic micro-and nanorobots, and micro fluidic devices. Recently, a new class of active system, carbon nanotube/polymer composite actuators, has received great attention with regard to macroscopic artificial muscle applications. It has been demonstrated that successful introduction of the highly conductive CNTs could significantly enhance the polymer nanocomposite's electrical, thermal, mechanical, and interface properties, thus providing a suitable material for novel artificial muscle-like actuator investigations.

May 19th, 2010

Shooting nano-droplets

nanodropletThe ability to extract, dispense and manipulate very small amounts of liquids on the micro- and nanoscale is important in biotechnology, chemistry and also for patterning inorganic, organic and biological inks. Several methods for dispensing liquids exist, but many require complicated electrodes and high-voltage circuits. Researchers in Italy have now demonstrated a pyroelectrohydrodynamic droplet dispenser based on pyroelectric forces.Researchers in Italy have developed and demonstrated a completely new method for extracting and dispensing very small amounts of liquid - as small as few attoliters - from liquid droplet reservoirs or thin liquid films by a method called pyroelectrohydrodynamic (Pyro-EHD).

May 18th, 2010

Achieving terabit scale F-RAM with ferroelectric nanoislands

ferroelectricFerroelectric materials have unique properties - spontaneous, switchable polarization, piezoelectricity, and pyroelectricity - that makes them attractive for a host of applications, ranging from medical ultrasound to examine fetuses and internal organs, military sonar for underwater navigation and detection, to energy harvesting devices for powering mobile gadgets. Recently, memory storage devices utilizing ferroelectrics have gained much attention due to their nonvolatility and fast switching speed. It was theoretically predicted that a nanodisk with a diameter of 3.2 nm could maintain spontaneous polarization. However the fabrication of ferroelectric nanostructure at this size level is extremely difficult and the smallest diameter for ferroelectric nanostructure with narrow size distribution obtained from experiments so far has been 60 nm. Researchers have now managed to prepare an ultrahigh density array of lead titanate nanoislands with a lateral dimension of 22 nm and a height of 7 nm.

May 17th, 2010

Energy-generating smart window

smart_window'Smart' windows, or smart glass, refers to glass technology that includes electrochromic devices, suspended particle devices, micro-blinds and liquid crystal devices. Their major feature is that they can control the amount of light passing through the glass and increase energy efficiency of the room by reducing costs for heating or air-conditioning. In the case of self-powered smart windows the glass even generates the energy needed to electrically switch its transparency. A new type of smart window proposed by researchers in The Netherlands makes use of a luminescent dye-doped liquid-crystal solution sandwiched in between electrically conductive plates as an energy-generating window.

May 12th, 2010

Nano-engineered steels for structural applications

steel-makingSteel is one of the most widely used engineering materials in the world. Its pre-eminent position amongst the engineering materials arises due to the abundance and low cost of its main constituent, i.e. iron, and its amenability to produce a wide variety of engineered microstructures with superior properties, and recyclability. Currently, there is a growing awareness about the potential benefits of nanotechnology in the modern engineering industry, and a number of leading research institutes and companies are pursuing research in the area of nanostructured steels. The focus of the ongoing efforts has been largely manipulation of microstructures at the nano-scale through innovative processing techniques and adoption of novel alloying strategies.

May 10th, 2010

Re-shaping bacterial inclusion bodies as improved nanomaterials for tissue engineering

inclusion_bodiesCultured mammalian cells prefer growing on structured rather than on completely flat surfaces. In regenerative medicine, in which human cells must grow on artificial scaffolds to replace damaged tissue, appropriate biological signals, such as growth factors, but also mechanic stimuli should be provided at the nano and microscales for cell attachment and proliferation, mimicking the natural cell matrices in organic tissues. The straightforward fabrication of nanostructured surfaces as scaffolds for tissue engineering is complex, but instead, micro- and nanorugosities can be easily generated on flat surfaces by either top-down or bottom-up approaches. Researchers have demonstrated that bacterial inclusion bodies formed by biologically irrelevant polypeptides are convenient biomaterials for the bottom-up decoration of substrates for mammalian cell growth.

May 7th, 2010

Organic light-emitting transistors outperforming OLEDs

oledOLEDs - organic light-emitting diodes - are full of promise for a range of practical applications. OLED technology is based on the phenomenon that certain organic materials emit light when fed by an electric current and it is already used in small electronic device displays in mobile phones, MP3 players, digital cameras, and also some TV screens. With more efficient and cheaper OLED technologies it will possible to make ultra flat, very bright and power-saving OLED televisions, windows that could be used as light source at night, and large-scale organic solar cells. In contrast to regular LEDs, the emissive electroluminescent layer of an OLED consists of a thin-film of organic compounds. Exciton quenching and photon loss processes still limit OLED efficiency and brightness. Organic light-emitting transistors (OLETs) are alternative, planar light sources combining, in the same architecture, the switching mechanism of a thin-film transistor and an electroluminescent device. Thus, OLETs could open a new era in organic optoelectronics and serve as test beds to address general fundamental optoelectronic and photonic issues.

May 6th, 2010

Nanotechnologies to mitigate global warming

global_warmingOne of the greatest current environmental concerns both for the near term as well as for the future is global warming caused by man-made carbon emissions and its well-recognized impact on climate change. The various strategies which can be adopted to combat global warming are classified under the following three categories: 1) Reducing energy consumption by employing more efficient technologies that minimize use of fossil fuels; 2) Adopting technologies that utilize renewable energy and energy storage technologies; 3) Addressing carbon management issues that involve separation, capture, sequestration and conversion to useful products. The present article will specifically address the first two topics.

May 4th, 2010