Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 9 - 16 of 32 in category All (newest first):

 

'Cyborg' microfilter actively cleans decontaminated water

nanoparticlesNew work on self-propelled biohybrid microrobots has been inspired by recent developments of biohybrid cyborgs that integrate self-propelling bacteria with functionalized synthetic nanostructures to transport materials. Taking inspiration from the science fiction concept of a cybernetic organism, or cyborg, researchers developed a self-propelled biohybrid microrobot, named rotibot, employing the marine microorganism rotifer as their engine.

Apr 3rd, 2019

The impact of electrochemistry on micro- and nanorobot design

nanoroboticsA recent review article highlights the role of electrochemistry in synthesizing materials for self-powered micro- and nanodevices; the aspect of charge transfer and changes in electrochemical potentials for locomotion; control of self-propelled motion using electrochemistry and electric fields; and possible applications in electrochemical sensing and energy generation using micro- and nanoscale motion. The authors discuss various electrochemical techniques, which allow for the fabrication of large amounts of micro/nanorobots from diverse materials, with and without the use of templates.

May 16th, 2017

Spermbots - microrobotics meets sperm cells

spermbotsResearchers show how spermatozoa can be useful parts of microdevices: As biocompatible propulsion source, but also entailing other functionalities such as their natural destiny for fertilization, their ability to respond to stimuli, or their ability to take up drugs open up fascinating new applications. They demonstrate first examples of using sperm cells as robotic components. The so-called spermbots are also systems that enable biophysical studies, e.g. of sperm motion in confinement.

May 3rd, 2017

Fast molecular cargo transport by diffusion

nanomotorIn new work, researchers have utilized diffusion as an effective transport mechanism for DNA nanotechnology. These findings contribute a new aspect to be considered for the design of future DNA motors, molecular machines, and nanorobots as they provide a simple way to transport molecules over distances of potentially several 100 nm; which is much faster than when using conventional DNA walkers or motors, which make many small and slow steps.

Mar 19th, 2015

Has nanomedicine lived up to its promise?

nanomedicineHistorically, the approval of Doxil as the very first nanotherapeutic product in 1995 is generally regarded as the dawn of nanomedicine for human use. Although numerous products classified as nanomedicine products have indeed appeared over the past decade, such products have not exactly revolutionized treatment paradigms as envisaged earlier. In particular no molecular machine or nanorobot has yet entered clinical trials, although research in these areas is picking up pace.

Mar 10th, 2015

Understanding springs at the nanoscale: a step towards nanorobots

nanospringInspired by nature's ingenious biological designs, researchers have persistently attempted to mimic these biofunctionalities to bring technological breakthroughs. One of these morphologies - the unique shape of a helical coil - is not only interesting from a scientific standpoint but also pivotal, offering DNA its distinctive properties and propelling flagella in viscous fluids, to name a few. With the advent of personalized medicine on the horizon, researchers are now trying to use tiny springs made of carbon nanotubes, i.e. nanocoils, to propel nanorobots to perform microsurgeries.

Oct 31st, 2014

A nanorobotics platform for nanomanufacturing

nanomotor_lithographyThe complexity and high cost of the state-of-the-art high-resolution lithographic systems are prompting unconventional routes for nanoscale manufacturing. Inspired by natural nanomachines, synthetic nanorobots have recently demonstrated remarkable performance and functionality. Nanoengineers now have invented a new nano-patterning approach, named Nanomotor Lithography, which translates the autonomous movement trajectories of nanomotors, or nanorobots, into controlled surface features that brings a twist to conventional static optical fabrication systems.

Oct 28th, 2014

Graphene-based biomimetic soft robotics platform

soft_roboticsAmong the various robotic actuation mechanisms driven by different stimuli, light-driven systems have garnered more and more attention due to their advantages in wireless/remote control, localized rather than whole-field driven capabilities, and electrical/mechanical decoupling. Inspired by the photothermal effect of graphene in biomedical applications, researchers have now demonstrated an easily fabricated and remote/wireless control light-driven approach to actuation mechanism based on graphene nanocomposites.

Oct 23rd, 2014