Showing Spotlights 17 - 21 of 21 in category All (newest first):
Semiconductor photonics, electronics and optoelectronics infrastructure is at the core of the information society. As the length scales of electronic devices continue to shrink, the cost of traditional approaches to device fabrication involving lithography is becoming excessive. It is regarded that self-assembled growth methods are a solution to the problem of fabricating smaller devices at a lower cost. Self-assembled quantum dots (QDs) are providing the possibility of new devices for this infrastructure in the short, medium and long term. QDs are ideal for the study of the fundamental properties of nanostructures, which is applicable across the nanotechnology and nanoscience sector. Research in self-assembled semiconductor QDs is therefore characterized by a remarkably well-matched combination of the two main motivations for scientific research, namely academic interest and the potential for industrial applications. As a consequence, there is an intense scientific activity in materials growth, structural characterization, optical and transport spectroscopy, device engineering and computational modeling. The field of self-assembled semiconductor nanostructures started in 1985 in Europe by a French group at the Centre National d'Etudes des Telecommunications - CNET.
Oct 12th, 2006
With the recent development in nanoscience and nanotechnology, a large variety of single-component nanomaterials (such as carbon nanotubes, nanoparticles, and quantum dots) and devices have been reported. There is now a pressing need to integrate multicomponent nanoscale entities into multifunctional systems and to connect these nano-systems to the micro/macro-world. This connection from the nano world to the macro world has been one of the long-standing problems in nanotechnology and still remains a big challenge. A novel approach of growing aligned carbon nanotubes (CNTs) around microsized carbon fibers should provide a useful platform technology for the development of various multidimensional and multifunctional nanomaterials and devices.
Aug 11th, 2006
The fabrication of ultrafine structures beyond the limits of conventional lithography is a topic of tremendous importance and is expected to play a significant role in the realization of futuristic nanotechnology. It is also equally important to develop functional material systems of ultrafine dimensions in order to achieve this goal. An important step towards realization of nanodevices is self-organized nanopatterning of functional structures. A new technique, which might be called chemical lithography, enables the regular assembly of optically active nanoparticles on a silicon surface.
Aug 1st, 2006
In order to survive, biological systems need to form patterns and organize themselves. Scientists at the Max Planck Institute for Colloids and Interfaces (MPI-KG) in Potsdam, Germany, have now combined self-organization with chemical pattern formation. They demonstrated that oscillating reaction patterns like that of a Belousov-Zhabotinsky reaction can not only be generated in a one-phase system like in all previous examples but also in a two-phase system like liquid-solid.
Jul 12th, 2006
New research findings substantially improve the yields in the fabrication of devices with molecular monolayers active channels and significantly reduce the density of defects caused by metal penetration.
Feb 9th, 2006