Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 585 - 592 of 643 in category All (newest first):

 

Lithography-free formation of nanopores in low-cost plastic materials

Synthetic nanopores are promising biosensors, possibly as a robust and versatile replacement for their biological counterparts in characterizing DNA, RNA, and polypeptides. In the past few years since their first introduction, synthetic nanopores have been found in a wide range of biological and nonbiological applications, including characterization of double-stranded DNA length and folding, detection of immune complexes, profiling of optical traps, and basic studies of nanoscale ion transport mechanisms. Given the broad technological importance of synthetic nanopores, it is highly desirable to develop a reliable technique for fabricating these devices using low-cost materials. Researchers at Brown University now report a systematic study of nanopore formation in a plastics system. They also developed a lithography-free technique for fabricating nanopores with biomolecular sensing capabilities.

Nov 15th, 2006

Photocatalytic growth process for metallic nanocages could double as biomolecular nanotagging

Back in March Nanowerk Spotlight reported on work by Sandia researchers who developed a range of novel platinum nanostructures with potential applications in fuel and solar cells (see: Novel platinum nanostructures). Through the use of liposomal templating and a photocatalytic seeding strategy the Sandia team produced a variety of novel dendritic platinum nanostructures such as flat dendritic nanosheets and various foam nanostructures (nanospheres and monoliths). In an intriguing follow-up report on the growth of hollow platinum nanocages, they now show for the first time a one-to-one correspondence between the porphyrin photocatalyst molecules and the seed particles that go on to grow the dendrites. This indicates that the whole process might be used for nanotagging biological molecules and other structures that have been labeled with a photocatalytic porphyrin.

Nov 14th, 2006

Reducing the size of multi-layer nanoshells enables new sensing applications

Nanoshells are a novel class of optically tunable nanoparticles that consist of alternating dielectric and metal layers. They have been shown to have tunable absorption frequencies that are dependent on the ratio of their inner and outer radii. Therefore nanoshells can potentially be used as contrast agents for multi-label molecular imaging, provided that the shell thicknesses are tuned to specific ratios. When used as contrast agents, nanoshells of small dimensions offer advantages in terms of delivery to target sites in living tissues, bioconjugation, steric hindrance, and binding kinetics. Besides their improved tissue penetration, smaller nanoshells generate a strong surface plasmon resonance and may exhibit absorption peaks in the visible?near-infrared spectrum. Sub-100 nm nanoshells also provide large surface areas to volume ratios for chemical functionalization that can be used to link multiple diagnostic (e.g. radioisotopic or magnetic) and therapeutic (e.g. anticancer) agents. Researchers at Northwestern University have come up with a relatively easy way to synthesize sub-100 nm nanoparticles that give rise to tunable peaks.

Nov 10th, 2006

Rare-earth nanocapsules as a new type of nanomaterial for cryogenic magnetic refrigerators

The interest in research on magnetic nanocapsules has increased considerably since it was found that their intermediate states between bulk and atomic materials may present different magnetic behaviors from their correspondent bulk counterparts. This difference offers an opportunity for researchers to develop many important technical applications such as magnetic refrigerators, magnetic recording, or magnetic fluids. As the principal contributor of the novel properties, various magnetic cores of nanocapsules, including rare earths and their carbides, have been researched extensively over the past two decades. In addition, cores of magnetic rare-earth intermetallic compounds are becoming a major research focus. However, there have been considerable difficulties in preventing oxidation of the particles of rare-earth elements and compounds. Researchers in PR China have now succeeded in synthesizing a new type of intermetallic nanocapsule that can be applied in cyrogenic magnetic refrigerator devices.

Nov 6th, 2006

A novel approach to control the microstructure of carbon nanotubes

Various methods have been developed for growing well-aligned CNTs based on variant alignment mechanisms such as 'overcrowding growth', 'template hindrance growth' and 'electric field induced growth'. Compared to other methods, electric field induced growth has been considered to be a more effective and controllable method for producing well-aligned single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). Interestingly, while the alignment of CNTs became more controllable and repeatable with the assistance of an electric field, it was also shown that for CNTs grown in an electric field, the diameter uniformity and the crystallinity of graphite sheets of CNTs were clearly improved. This led Chinese researchers to develop an electric-field-induced method to not only improve CNT uniformity but also to create a new approach to control the microstructure of CNTs.

Nov 2nd, 2006

Nanomaterials made from apricots and cashew nuts could replace petrochemicals

The use of renewable resources (biomass) as an alternate source for fuel and the production of valuable chemicals is becoming a topic of great interest and a driving force behind research into biorefinery concepts. In the early parts of the 20th century, most nonfuel industrial products such as medicines, paints, chemicals, dyes, and fibers were made from vegetables, plant and crops. During the 1970s, petroleum based organic chemicals had largely replaced those derived from plant materials, capturing more than 95% of the markets previously held by products from biological sources. By then, petroleum accounted for more than 70% of our fuel. However, recent developments in biobased materials research show prospects that many petrochemical derived products can be replaced with industrial materials processed from renewable resources. Researchers continue to make progress in research and development of new technologies that bring down the cost of processing plant matter into value-added products. Rising environmental concerns are also suggesting the use of agriculture and forestry resources as alternative feedstock. Being able to develop soft nanomaterials and fuel from biomass will have a direct impact on industrial applications and economically viable alternatives. Researchers already have used plant-derived resources to make a variety of soft nanomaterials, which are useful for a wide range of applications.

Oct 31st, 2006

Novel method simplifies large-scale nanofabrication process

As scientific interests and engineering applications delve down to the nanometer scale, there is a strong need to fabricate nanostructures with good regularity and controllability of their pattern, size, and shape. Furthermore, the nanostructures are useful in many applications only if they cover a relatively large sample area and the manufacturing cost is reasonable. Researchers at UCLA have now achieved a breakthrough by developing a simple but efficient fabrication method to produce well-regulated silicon nanostructures over a large sample area with excellent control of their pattern, size, and shape. Affordable surfaces with well-controlled nanostructures over a large area open new applications not only in electronics but also in the physical world through their unique properties originating from their nanoscale geometry.

Oct 27th, 2006

Nanocomposite adhesives hold enormous potential for demanding applications in displays and electronics

Adhesives may be broadly divided in two classes: structural and pressure sensitive. To form a permanent bond, structural adhesives harden via processes such as evaporation of solvent or water (white glue), reaction with radiation (dental adhesives), chemical reaction (two part epoxy), or cooling (hot melt). In contrast, pressure sensitive adhesives (PSAs) form a bond simply by the application of light pressure to attach the adhesive to the adherend. PSAs adhere instantly and firmly to nearly any surface under the application of light pressure, without covalent bonding or activation. Waterborne pressure-sensitive adhesives solve the problem of meeting environmental regulations that forbid the emission of volatile organic compounds in manufacturing. However, often waterborne PSAs have poor adhesive performance. Another problem, particularly relevant to display technologies, is how to make an electrically-conducting material that is also flexible and optically transparent. Indium tin oxide is commonly used as a transparent electrode in displays, but it is brittle and prone to mechanical failure or scratching. Adhesives can be made electrically conductive through the addition of metal particles, but then they lose optical transparency, and their adhesiveness is diminished. New research shows that waterborne PSAs containing single-wall carbon nanotubes (SWNTs) meet the requirements of environmental regulations while improving the adhesive performance. The resulting unprecedented combination of adhesion and conductivity properties holds enormous potential for demanding applications in displays and electronics.

Oct 24th, 2006