Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1 - 8 of 102 in category Green Nanotechnology (newest first):


Nanotechnology and energy - a path to a sustainable future

green_energyAgainst the double-whammy backdrop of an energy challenge and a climate challenge it is the role of innovative energy technologies to provide socially acceptable solutions through energy savings; efficiency gains; and decarbonization. Nanotechnology It may not be the silver bullet, but nanomaterials and nanoscale applications will have an important role to play. This article provides an overview of the issues and nanomaterials and applications that are being researched in the field of energy.

Posted: Jul 23rd, 2015

Carbon-negative CO2 conversion using renewable energy

co2Putting some of the rising amounts of carbon dioxide in the atmosphere to good use again, researchers are looking for ways to convert atmospheric CO2 emissions into industrially relevant, valuable chemicals and fuels; ideally powered by clean, renewable energy sources to make the whole process carbon-negative or at least carbon-neutral, i.e. by using at least - if not more - CO2 than is created in the process. New work demonstrates that current, state-of-the-art renewable energy sources can efficiently power large-scale CO2 conversion systems.

Posted: Jul 20th, 2015

A simple test kit for the detection of nanoparticles

nanoparticle_colorimetric_assayMeeting the need for a reliable, sensitive, and accurate methodology for the detection of nanoparticles in complex samples, using low-cost and portable instrumentation, scientists have developed a novel methodology to quickly screen for the presence and reactivity of nanoparticles in commercial, environmental, and biological samples. A colorimetric assay - similar to a swimming pool test kit - tests for the presence or absence of nanoparticles in biological and environmental relevant samples with sufficient sensitivity at part per billion concentration levels.

Posted: Feb 20th, 2015

Nanowaste - Nanomaterial-containing products at the end of their life cycle

landfillAt the end of their product life cycle, nanomaterials can enter waste treat ment plants and landfills via diverse waste streams. Little, however, is known about how nanomaterials behave in the disposal phase and whether potential environmental or health risks arise. The current assumption is that stable nanoparticles are neither chemically nor physically altered in waste incineration plants and that they accumulate especially in the residues (e.g. slag). These residues are ultimately dumped. The disposal problem in the case of stable nanoparticles is therefore merely shifted to the subsequent steps in the waste treatment process.

Posted: Jan 27th, 2015

A risk-ranking tool for nanomaterials used by the military

stealth_fighterMilitary organizations around the world, especially in the U.S., have been quicker than most to appreciate the potential of nanotechnology. More money is being spent on nanotechnology research for military applications than for any other area. Public releases about military nanotechnology research and development activities are full about sensors, batteries, wound care, filtration systems, smart fabrics, and lighter, stronger, heat-resistant nanocomposite materials etc. Naturally, nanomaterial safety has become an important issue for military organizations as well.

Posted: Jan 6th, 2015

Single-pot electrolytic synthesis of hydrogen and carbon fuels

STEP_processResearchers have successfully attempted to simultaneously co-generate hydrogen and solid carbon fuels from a mixed hydroxide/carbonate electrolyte in a 'single-pot' electrolytic synthesis at temperatures below 650 C. This is the first demonstration of the co-generation of hydrogen and carbon fuels at a single electrode and from a molten electrolyte. Here, fuel production can be driven entirely by solar energy using the STEP process in which solar thermal energy increases the system temperature to decrease electrolysis potentials.

Posted: Jan 5th, 2015

Leverage nanotechnology to speed up the energy transition

energy_transitionDrawing attention to the possible implications of extreme weather does not answer the question what we can really do about the risks of climate change, and who will drive fresh solutions. Science - including nanotechnology - is an important part of the answer, and we need human ingenuity to step forward. To accelerate the process and help to push the boundaries of usable energy solutions, the Exergeia Project backs potentially groundbreaking inventions and innovations in all fields of alternative energy.

Posted: Dec 5th, 2014

Nanotechnology in the 'green' economy - opportunities and risks

green_economyA new review article examines opportunities and practical challenges that nanotechnology applications pose in addressing the guiding principles for a green economy. There is a general perception that nanotechnologies will have a significant impact on developing 'green' and 'clean' technologies with considerable environmental benefits. The associated concept of green nanotechnology aims to exploit nanotech-enabled innovations in materials science and engineering to generate products and processes that are energy efficient as well as economically and environmentally sustainable.

Posted: Nov 18th, 2014