Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 161 - 168 of 331 in category All (newest first):

 

Smart graphene contact lenses bring wearable electronics to the eye

graphene_contact_lensSeveral research projects are working on reinventing the contact lens as a smart electronic device that, for instance, works as a self-powered biosensor for various point-of-care monitoring and wireless biomedical sensing. n addition to sensors, researchers are devising numerous applications for smart contact lenses, ranging from drug delivery systems to protection from electromagnetic wave damage. An application closer to contact lenses' original function, graphene can change the focal length of a polymeric soft contact lens in order to adjust near- and farsightedness.

May 22nd, 2017

How to directly measure the surface energy of pure graphene

interferogramAccess to accurate surface energy values of graphene is not only of fundamental interest, but provides a useful reference for anyone involved in research on graphene properties, (surface) modifications, and the implementation of graphene in devices. New research demonstrates the successful application of the graphene surface force balance (g-SFB) to directly measure the surface energy of pure graphene. This work is of fundamental interest to a broad community and will aid the advancement of fundamental measurements of 2D and other nanomaterials.

May 17th, 2017

Defects in graphene enable selective permeability of gases

graphene_defectsDespite their potential, the practical use of Li-O2 batteries is seriously limited by the corrosion of Li metal by ambient water vapor from air. One way to circumvent this issue is to use an oxygen selective membrane that allows only oxygen into the battery while stopping or slowing water vapor intake. The membrane must be mechanically robust and yet sufficiently thin and light so as to not increase deadweight of the battery. Researchers now have discovered a way to make the thinnest possible oxygen selective membrane using graphene.

Apr 25th, 2017

Tunable and flexible 2D organic-inorganic hybrid photodetectors

hybrid_nanosheetsPhotodetectors with a spectral response from the ultraviolet (UV) to visible light have significant importance in modern industrial and scientific applications such as imaging, communication, environmental monitoring and day and nighttime surveillance. Compared to other materials, the photo-current conversions of two-dimensional transition metal dichalcogenides such as MoS2 nanosheets are impressive, making them great candidates for next-generation visible light photodetectors. Researchers have now developed a facile and low-cost solution processing strategy to fabricate mechanically flexible 2D organic-inorganic hybrid thin-film photodetectors on a conventional filter paper.

Mar 9th, 2017

A new contact to the two-dimensional world

MXeneNext-generation electronics will be based on two-dimensional semiconductors, which have a significantly higher resistance than conventional silicon-based electronics. This development is significantly limited by the high contact resistance between the metal electrode and the 2D semiconductor. To minimize the energy dissipation and improve the device performance, it is critical to reduce the contact resistance. Researchers have now shown that MXenes, a class of 2D metal carbides or nitrides, can achieve low contact resistance with 2D semiconductors.

Feb 22nd, 2017

Two-dimensional oxides juice up sodium ion batteries

2D-materialResearchers have demonstrated that nanoengineered SnO anodes suppress volume change and prolong sodium ion battery cycle life. Sodium ion batteries are promising alternative to lithium ion batteries, particularly for home based and grid level storage solutions. Tin monoxide has been demonstrated to have excellent physical and chemical properties and has a large theoretical capacity as battery anode, for instance for sodium ion batteries. Unfortunately, though, it also exhibits large volume change during the sodiation and lithiation process, which makes it unsuitable as a high-performing anode material.

Feb 9th, 2017

Topological defects make metal-free nanocarbon promising for zinc-air batteries

graphene_meshThe oxygen reduction reaction (ORR) is the core process - but also the bottleneck - for the cathode reaction of energy-conversion devices like certain types of fuel cells and metal-air batteries. Nanocarbon materials are very promising alternatives for the noble metal catalysts, especially platinum, that have been used to boost this reaction. New work comprehensively reviews and correlates activity origins of nanocarbon-based ORR electro�catalysts, considering the dopants, edges, and defects. Specific doping at defective edges is expected to render practical applications for metal-free nanocarbon electrocatalysts.

Jan 12th, 2017

Enhanced fuel cell performance using one atom thick 2D material

graphene_membraneMethanol fuel cells are widely considered as a potential source of future energy due to the usage of methanol as a liquid fuel; simplicity in operation; higher energy density of methanol fuel; high power density obtained etc. However their commercialization is greatly hindered by methanol crossover taking place in the membrane area of fuel cells, leading to short circuits and greatly affecting overall performance. By using two-dimensional (2D) materials - graphene and hexagonal boron nitride (hBn) - in methanol fuel cell systems, researchers now have overcome this bottleneck.

Dec 7th, 2016