Open menu

Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1537 - 1544 of 2140 in category (newest first):

 

Palm-sized biosensor for point-of-care and field applications

biosensorThe term biosensing relates to systems that include electronic, photonic, biologic, chemical and mechanical means for producing signals that can be used for the identification, monitoring or control of biological phenomena. The resulting biosensors are devices that employ biological components such as proteins to provide selectivity and/or amplification for the detection of biochemical materials for use in medical diagnostics, environmental analysis or chemical and biological warfare agent detection. Surface plasmon resonance (SPR) has become the technology of choice for label-free detection of proteins and other biomolecules. SPR is based on the excitation of a surface plasmon at the interface between a dielectric and a thin layer of metal, typically gold. Once the sample is covered with the nanostructured gold layer (or another suitable metal), the surface absorbs light at certain wavelength. The absorption maximum is influenced by the refractive index of the fluid at the gold surface. This effect is called localized surface plasmon resonance (LSPR) and it is used for detection of presence of biomolecules, such as specific proteins.

Posted: Aug 4th, 2008

Nanotechnology basics: How does a carbon nanotube grow?

carbon_nanotubeOne of the best ways to gain control over synthesis of nanoparticles is to watch it happen. Take carbon nanotubes (CNTs): Synthesis of CNTs is a field that is growing explosively - but there is a lot that nanotechnology researchers don't know about how nanotubes form and grow. While there are a number of in situ characterization methods for nanotube synthesis under development worldwide, each with different strengths and weaknesses, much of the information about the nanotube structure is indirect. Historically, in situ characterization tools have accelerated progress in synthesis for many advanced materials, and there is widespread recognition that in situ tools have the potential to improve CNT synthesis as well. Ideally one would like to detect individual nanotubes and ensembles as they grow and measure their physical properties while imposing minimal constraints on the synthesis method. In other words, with a good understanding of the synthesis process we would be better able to control the product.

Posted: Aug 1st, 2008

The debate about converging technologies

human_enhancementsThe Office of Technology Assessment at the German Parliament (TAB) has released a massive 266-pages report on Converging Technologies (CT). The report's author, Christopher Coenen, analyses CT-related political initiatives and activities in the USA, European Union and Germany as well as some other countries. Utopian and dystopian long term visions for Converging Technologies and Human Enhancement offer clear potential for social conflict. Most of the discussions have so far been limited to academic circles, but some have reached political relevance. These focus on the relationship between nature and technology and between the grown and the artificial. Differences in views on what it means to be human are central to these disputes. The criticism against promoters of convergence visions is that the feasibility is doubtful and that the views are inspired by political and ideological motives. The report outlines options for actions and the possible requirements for research and he ends his report by suggesting options for research funding.

Posted: Jul 30th, 2008

Self-healing nanotechnology anticorrosion coatings as alternative to toxic chromium

nanomatRemember the movie blockbuster Erin Brockovich? The film is based on a real world legal case that revolves around hexavalent chromium, also known as chromium (VI), used by the Pacific Gas and Electric Company to control corrosion in cooling towers in its Hinkley, CA compressor station. Chromium (VI), a natural metal, is known to be toxic and is recognized as a human carcinogen via inhalation. It also is widely used by industry in the manufacture of stainless steel, welding, painting and pigment application, electroplating, and other surface coating processes. Researchers in Germany now have developed a novel method of multilayer anticorrosion protection including the surface pre-treatment by sonication and deposition of polyelectrolytes and inhibitors. This method results in the formation of a smart polymer nanonetwork for environmentally friendly organic inhibitors.

Posted: Jul 29th, 2008

First prototype of an integrated optoelectronic SWCNT device

carbon_nanotube_optocouplerTransparent conductive coatings pervade modern technology and they are a critical component of optoelectronic devices. Today, the most widely used standard coating in nearly all flat panel displays and microdisplays is indium tin oxide. As indium becomes increasingly scarce and expensive, the search for novel transparent electrode materials with good stability, high transparency and excellent conductivity has become a crucial goal for optoelectronic researchers. There are strong and successful efforts from several research groups around the world to develop optoelectronic devices on the basis of individual single-walled carbon nanotubes. This development is of great scientific interest, although there are major challenges in finding technologically feasible ways to assemble the individual nanotube devices into functioning electronic circuits with a high level of integration.

Posted: Jul 28th, 2008

The current status of nanotechnology-based therapeutics in humans

nanomedicineModern pharmaceutics is a very imprecise, wasteful and sometimes even dangerous discipline. Not only do most drugs fail even before they make it to market (about 80% of drugs never make it through clinical trials) but even the efficacy of many drugs that are being prescribed for certain diseases is questionable. The most important challenge, though, is to deliver the correct dose of a particular therapeutic (small molecules, proteins, or nuclei acids) to a specific disease site. Since this is generally unachievable, therapeutics have to be administered in excessively high doses, thereby increasing the odds of toxic side effects. Nanotechnology offers great visions of improved, personalized treatment of disease. The hope is that personalized medicine will make it possible to develop and administer for each individual patient the appropriate drug, at the appropriate dose, at the appropriate time. The benefits of this approach are accuracy, efficacy, safety and speed. Today, commercial nanomedicine is at a nascent stage of development and the full potential of nanomedicine is years or decades away. Currently the most advanced area of nanomedicine is the development and use of nanoparticles for drug delivery.

Posted: Jul 25th, 2008

Nanotechnology fabrication based on inorganic replicas of complex biotemplates

eye_of_a_flyThe use of design concepts adapted from nature is a promising new route to the development of advanced materials. There are quite a number of terms such as biomimetics, biognosis, biomimicry, or even 'bionical creativity engineering' that refer to more or less the same thing: the application of methods and systems found in nature to the study and design of engineering systems and modern technology. And increasingly, nanotechnology researchers find naturally occurring nanostructures a useful inspiration for overcoming their design and fabrication challenges. Because biological structures are the result of millennia of evolution, their designs possess many unique merits that would be difficult to achieve by a completely artificial simulation. By replicating the eye of a fruit fly, researchers have now demonstrated a highly reliable and low-cost technique for making inorganic replicas of biotemplates for fabricating complex nanostructures with biologically inspired functionality.

Posted: Jul 24th, 2008

A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules

surface-enhanced_nanosensorMuch is being written about nanotechnology's role in vastly improving the detection and treatment of cancer. Detection of cancer at the earliest stage provides the greatest chance of survival. Unfortunately, cancer has a logarithmic growth rate. A one cubic centimeter size tumor may have 40-50 cell divisions and typically doctors don't see 80% of the life of a tumor. The detection of a protein pattern in blood serum can be helpful in evidencing a possible presence of cancer at an early stage. The problem is that 'early' means the capability of detecting very few molecules in dilute conditions. Now, in another step to improve the design and fabrication of devices for single molecule detection, new research has demonstrated an experimental capability of detecting down to as few as 10 organic molecules deposited on a quantum dot.

Posted: Jul 23rd, 2008