Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 25 - 32 of 61 in category All (newest first):


Anti-counterfeiting with DNA nanotechnology

dna_securityRecent developments in nanotechnology have enabled significant improvement in the field of anti-counterfeiting measures. One company for instance is working on fluorescent nanostructures to improve banknote security; another one has developed DNA tags for deposition on nanoelectronics wafers and computer chips to ensure the integrity and security of processed wafers. DNA-based protection technologies are especially suitable for anti-counterfeiting measures.The DNA molecules are added a products raw material during the production process. Only 1 ppm (one part per million) is required to uniquely mark the material The DNA molecular structure can then be read as a mathematical code based on the four DNA molecules. So a DNA code, in contrast to the binary code used in IT security, is a combination of the letters A, C, G and T. A 10-digit code could look like this: C-G-A-C-T-T-G-A-C-A.

Nov 6th, 2012

DNA-templated nanoantenna captures and emits light one photon at a time

nanoantennaThe emission of light by a single molecule is a cornerstone of nano-optics that will enable applications in quantum information processing or single-molecule spectroscopy. However, a key challenge in nano-optics is to bring light to and collect light from nano-scale systems. In conventional electronics, the interconnect between locally stored and radiated signals, for example radio broadcasts or mobile phone transmissions, is formed by antennas. For an antenna to work at the wavelength of light it is necessary to downscale the structure by the same factor as the wavelength or the frequency of the wave, i.e. roughly by a factor of 10 million. Once the nanofabrication issues are sorted out, nano-optical antennas could become ubiquitous in all applications based on light-matter interactions such as sensing, light emission (e.g. LEDs) and detection, as well as light harvesting, i.e. for solar cell applications.

Jul 31st, 2012

Vaccines developed from DNA nanostructures come one step closer to a clinical reality

nanostructured_vaccineVaccination is one of the most effective ways to prevent microbial infection. Synthetic vaccines can combine a portion of a microbe, known as an 'antigen' together with an adjuvant that stimulates the immune system. Delivering both the adjuvant and antigen to the appropriate immune cells is challenging. DNA nanotechnology may provide a solution by acting as a scaffold to co-deliver both antigen and adjuvant. However, the potential of DNA nanostructure-based vaccines has only been demonstrated in vitro. Now, a team of researchers based out of Arizona State University demonstrated that DNA nanostructures with appended adjuvants could elicit antibody production against a model antigen in mice.

Jul 30th, 2012

Nanotechnology sensor could provide a much earlier warning signal for lung cancer

nanoporeEvery aspect of cellular activities, including cell proliferation, differentiation, metabolism and apoptosis, can be regulated by a class of tiny but very important nucleic acids fragments called microRNAs (miRNAs). They bind to specific messenger RNAs and cause messenger RNA degradation or inhibit translation, thereby regulate gene expression at the post-translational level. In cancer cells, the homeostasis of these normal biological processes is disrupted, partially by dysregulated miRNAs, therefore the level of microRNAs is an indicator to the disease development, and miRNAs in cancer tissues or biofluids can be utilized as a diagnostic biomarker for cancer detection. Now, researchers report a miRNAs-based discovery that could provide a much earlier warning signal for lung cancer.

Sep 20th, 2011

Connecting the dots - fused metal shapes on DNA origami

nanostructures_on_DNADNA origami is a design technique that is used by nanotechnology researchers to fold DNA strands into something resembling a programmable pegboard on which different nanocomponents can be attached. These DNA assemblies allow the bottom-up fabrication of complex nanostructures with arbitrary shapes and patterns on a 100 nm scale. For instance, DNA origami have been heralded as a potential breakthrough for the creation of nanoscale circuits and devices. DNA can also be metallized with different metals, resulting in conducting nanowires. Researchers have now have developed a method to assemble metallic nanocircuits with arbitrary shapes, by attaching metallic nanoparticles to select locations of the DNA origami and then fusing them to form wires, rings, or any other complex shape. These pre-designed structures are programmed by fully utilizing the self-assembling and recognition properties of DNA.

Aug 11th, 2011

Integrating DNA nanotechnology with traditional silicon processing for sub-20nm resolution

DNA_origamiTo build microprocessors with more than one billion transistors, manufacturers still use the same technique - photolithography, the high-tech, nanoscale version of printing technology - that they have been using for the past 50 years. State-of-the-art photolithography processes use 193 nm light to produce diffraction-limited features as small as 32 nm. Going beyond 32 nm, the cost and complexity rises significantly, posing massive technological and economic challenges for chip manufacturers. This provides plenty of incentives for researchers to explore alternative manufacturing technologies for chipmakers. One novel approach is based on the use of DNA nanostructures to pattern a silicon wafer.

Jul 26th, 2011

Novel approach for highly sensitive detection of miRNA down to individual strands

miRNA_detection_assayMicroRNAs (miRNAs) are short ribonucleic acid molecules, consisting of 21-25 nucleotide bases, that negatively regulate gene expression, also termed as gene silencing. Each miRNA is thought to regulate multiple genes, and since the human genome encodes hundreds of miRNAs, the potential regulatory circuitry afforded by miRNA is enormous. Recent discoveries suggest the association of specific miRNA sequences with a spectrum of diseases including cardiovascular and autoimmune diseases, as well as with a variety of cancers. It is therefore imperative, for diagnostics and prognostics, to accurately measure the expression levels of target miRNA molecules in patients' tissue samples or body fluids. To that end, researchers have developed an alternative way for the direct analysis of miRNAs in an array format, demonstrating fast and ultrasensitive detection of specific miRNAs.

Jun 6th, 2011

Functionalized nanochannels can detect single-mismatched DNA sequence

DNAA Single Nucleotide Polymorphism (SNP) is a single nucleotide replacement in a DNA sequence - occurring when a single nucleotide (A, T, C, or G) in the genome differs - which can result in different reaction by people to pathogens and medicines. Detection of these SNPs is becoming increasingly important with the move towards more personalized healthcare. Researchers are therefore working hard in developing biomedical lab-on-chip sensors that allow the fast detection of SNPs in DNA using only very small samples of a patient's blood. Already, nanoscale detection techniques such as synthetic nanochannels are being used for DNA detection by specific DNA hybridization with molecular probes immobilized on the nanochannel walls. However, the preparation of these sensors is not easy and specific functionalization at the wall surface remains a critical issues. Researchers have now introduced a new concept of DNA-based molecular recognition agents which allows detecting SNPs with very high precision and efficiency.

Feb 25th, 2011