Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 473 - 480 of 495 in category Fabrication Technologies and Devices (newest first):


Turning silver into gold - at least on the nanoscale

The color of metal colloids is highly dependent on their size and therefore being able to control the size is very important to tune the metal colors systematically. By controlling the wavelength of optical resonance of metal nanoparticles and their composition, researchers in South Korea have found a way to fabricate various colored metal colloids both easily and reproducibly. These findings could be very useful for biological assays.

Jul 10th, 2006

A novel method for mass production of nanotube based electronics

The mass production of nanoelectronic devices has been hampered by difficulties in aligning and integrating the millions of nanotubes required for the job. Now, researchers in South Korea have developed a method to precisely assemble and align single-walled carbon nanotubes (SWCNTs) onto solid substrates without relying on external forces such as electric or magnetic fields. This result could be an important guideline for the large-scale directed-assembly of integrated devices based on SWCNTs.

Jul 5th, 2006

Biomolecules as novel templates for the fabrication of nanostructures

Applying atomic layer deposition (ALD) to biological macromolecules opens a route to fabricate metal oxide nanotubes and thin films with embedded biomolecules. The combination of biomaterials and ALD does not yet allow for a construction of a device. However, there are some indications that the synthesis of thin films with embedded functional biomolecules, such as ferritin, might be suitable for e.g. flexible electronics.

Jun 29th, 2006

The challenge of synthesizing magnetic nanostructures

The scientific interest in magnetic nanostructures, both from a fundamental viewpoint and also due to their potential in a wide range of applications, over the past few years has led researchers to develop various nanofabrication methods for synthesizing nanomagnets. Applications for nanomagnetic materials include non-volatile magnetic random access memory (MRAM), highly sensitive magnetic field sensor, field programmable spin logic, and patterned media for ultra high density data storage.

Jun 20th, 2006

Controlled decoration of carbon nanotubes with nanoparticles

A newly developed electrostatic force directed assembly (ESFDA) technique is used to efficiently coat carbon nanotubes (CNTs) with nanoparticles. This new method advances the current technology by enabling rapid and in-situ coating of CNTs, multicomponent hybrid nanostructures, more control over the assembly process, and the possibility of tuning properties of the resulted hybrid structures.

Jun 7th, 2006

NanoFermentation: A bioprocess for manufacturing inorganic nanomaterials

NanoFermentation is the first system to use industrial bioprocessing methods to manufacture nanometer-scale inorganic engineering materials rather than organic compounds. NanoFermentation harnesses the natural metabolic processes of metal-reducing bacteria to create tailored, single-crystal nanoparticles of important engineering materials, particularly ferrites.

Jun 5th, 2006

A new fabrication method for nanospring technology

Nanosprings, which are helical nanowires grown via a modified vapor-liquid-solid (VLS) mechanism, are of interest to researchers because of their potential applications in biological and chemical sensors, high porosity applications such as fuel cells, and biomedical drug delivery applications. Thanks to a novel fabrication method, nanosprings can now be synthesized with a yield higher than 90%, and with 100% repeatability.

May 25th, 2006

Fabricating three dimensional nanostructures using two photon lithography in a single exposure step

New research shows that soft, conformable sub-wavelength phase masks can be used, with 2-photon effects, to pattern in a parallel fashion and in a single exposure step large, 3D structures in certain classes of photopolymers. The result is a technique that is simple from an experimental standpoint, but which fully exploits the flexibility and patterning capabilities enabled by 2-photon effects, making it useful for applications in photonics, microfluidics and biotechnology.

May 22nd, 2006