Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 65 - 72 of 2140 in category (newest first):

 

Graphene-oxide-based membranes for large-scale energy storage systems

graphene_oxide_membraneAs a promising large-scale energy storage technology, redox flow batteries (RFBs) are attracting increasingly more research attention. For RFB separators, the essential requirement is achieving high ionic conductivity with minimal cross-over at low cost. Researchers now have demonstrated a proof-of-concept graphene oxide (GO) membrane as separator for large-scale energy RFBs. Their work shows that the two-dimensional nanochannel structure and low frictional water flow inside micrometer-thick GO laminates make this material an attractive candidate membrane for large-scale energy storage systems.

Apr 17th, 2018

Driving nanomotors through road blocks inside living cells

cell_insideResearchers demonstrate that helical shaped magnetic nanomotors can be maneuvered inside a living cell. This new and versatile technique has the potential ability to position any payload at any desired location inside a living cell itself, which is of great importance in the field of biology and biophysics. The helical shaped nanomotors are made of mainly silica and a thin layer of magnetic material, while their size is at least ten times smaller than the cell which they enter in. A rotating magnetic field is used to drive the motors inside the cytoplasm with precise control.

Apr 16th, 2018

Nanosilicates grow bone and cartilage tissue from stem cells in the absence of growth factors

stem_cellsResearchers have demonstrated that a specific type of two-dimensional (2D) nanoparticles, nanosilicates, can grow bone and cartilage tissue from stem cells in the absence of growth factors. These nanoparticles are similar in shape to a coin, but 10 billion times smaller in size. Nanosilicates consist of minerals such as sodium, silicate, magnesium and lithium, which are already present in the body. This avoids the use of growth factors in the human body, which can generate harmful effects including unwanted tissue growth, such as a tumor.

Apr 13th, 2018

Point-of-care biosensor for rapid and accurate sepsis diagnosis

diagnostic_systemSepsis is the body's extreme response to an infection. It is life-threatening condition in which bacteria or fungi multiply in a patient's blood - often too fast for antibiotics to help. Without timely treatment, sepsis can rapidly cause tissue damage, organ failure, and death. A critical unmet need in combating sepsis is the lack of accurate early biomarkers that can alert clinicians to a potential life-threatening situation and allow them to take preventative action. In a new study, researchers report the development of a point-of-care platform for rapid sepsis detection, called IBS (integrated biosensor for sepsis).

Apr 12th, 2018

Design of nanochannel interfaces is a key point in energy utilization

membraneThe ability of nanochannels to regulate transported substances in confined spaces is of great research interest in innovative applications, such as high-resolution sensing, filtering, and high-efficiency energy utilization. In the last area, research on nanochannels in energy-related areas continues to face challenges such as low efficiencies, complex preparation processes, and high fabrication costs. Overcoming these challenges is an important and difficult task in the field of energy conversion, energy conservation, and energy recovery.

Apr 10th, 2018

Flexible data storage based on organic nanomaterials

flexible_memoryNext-generation electronic devices will be highly portable, wearable - even transplantable - lightweight, and most likely self-powered. Among the various functional block required for these systems (such as displays, sensors, actuators, etc), some of the most important components are novel flexible data storage systems that possess nonvolatile ability, high-density storage, high-switching speed, and reliable endurance properties. Especially organic memories have been considered as the most promising candidates to be used in various portable and wearable systems in future due to their remarkable advantages of nonvolatile memory features, low cost, easy fabrication, and flexibility.

Apr 9th, 2018

Batch-assembly of reconfigurable, multimodal 3D electronics (w/video)

e-whiskersWhiskers on animals allow them to build a rich understanding of their environment by feeling objects or even the flow of fluids. Many animals can also actively sweep, or 'whisk', their whiskers, enabling them to gather complex information about the architecture of their environment. Researchers have replicated this whisking action by exploiting the shape memory effect of a polymer substrate, which can be dynamically repositioned by modulating the temperature and air flow across the electronic whiskers (e-whiskers).

Apr 3rd, 2018

Single crystalline epitaxy of all inorganic lead-free halide perovskite paves the way for high-performance electronics

quantum_well_systemHalide perovskites have attracted tremendous interest due to their fascinating optoelectronic properties. Driven by the concerns of toxicity derived from lead and instability caused by organic components, researchers have turned to all-inorganic lead-free halide perovskites. However, compared to hybrid lead perovskite, lead-free compositions usually demonstrate poor crystallinity, low ordering, and high defects that suppress the performance of optoelectronic devices. Scientists now have deployed a new approach to grow all inorganic lead-free halide perovskites.

Mar 29th, 2018