Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1 - 8 of 337 in category Bionanotechnology, Nanomedicine (newest first):

 

Plasmonic nanocrystals for combined photothermal and photodynamic cancer therapies

hyperthermiaAn international team of researchers used abiotic assays, cultured cancer cells, and a melanoma animal model to demonstrate the photothermal therapy (PTT) activity of copper sulfide nanocrystals. The research lays out the working principle of colloidal, near-infrared light (NIR) plasmonic copper sulfide nanocrystals exploitable for both photodynamic therapy (PDT) and PTT therapy with NIR activation. This is the first report that under a NIR light radiation copper sulfide nanocrystals achieve efficient cancer destroying efficacy via PTT and PDT mechanisms both in vitro and in vivo.

Posted: Feb 17th, 2015

Multiplexing biosensors on a chip for human metabolite detection

hydrogelSo far, there have been very few research reports on single electrode materials that enable the simultaneous detection of different metabolites - such as glucose, urea, cholesterol, and triglycerides - in whole blood. Moreover, it is a considerable challenge to integrate all required materials and devices on a single chip to ultimately produce a multiplexing biosensor array. In new work, researchers demonstrate that biosensors based on conducting polymer hydrogels enable the precise and full-range detection of different metabolites in human blood.

Posted: Jan 22nd, 2015

Biodegradable graphene can radio-thermally ablate radiation and chemo resistant cancer cells

Transferrin-conjugated_grapheneResearchers have developed a simple method to thermally ablate highly resistant cancer cells using targeted biodegradable graphene nanoparticles. They found that graphene can convert non-ionizing radio waves - the same that are used in FM radios - into heat energy at microscopic levels. This heat is sufficient to completely destroy proteins and DNA inside individual cancer cells, irrespective of any kinds of resistant mechanisms that drives cancer cells at advanced stages.

Posted: Jan 16th, 2015

First demonstration of micromotor operation and payload release in living organism (w/video)

micromotorNew findings address the challenges of operating synthetic motors in living organisms through the use of biocompatible motors that are powered by body fluid (acidic stomach environment). As the zinc body of the motor is dissolved by the acid fuel, the motors are self-destroyed, leaving no harmful chemicals behind. The study reports on the distribution, retention, cargo delivery and toxicity profile of zinc/polymer-based microrockets in a mouse stomach.

Posted: Jan 15th, 2015

A nanoelectromechanosensing approach to detect cancerous transformation of single cells

cell_with_microfilamentsSince diseased cells, such as cancer cells, frequently carry information that distinguishes them from normal cells, accurate probing of these cells is critical for early detection of a disease. Adding to these highly accurate methods for monitoring such alterations in single cells, researchers have now demonstrated a nanoelectromechanical procedure to relate the correlation between the mechanical stimulation of a cell's actin filaments and the electrical activities of ion channels to the cancerous state of the cell.

Posted: Dec 17th, 2014

Thermotherapy for pain management with a smart thermal patch

thermotherapyAdvanced health monitoring systems and healthcare devices will become an integral part of the Internet of Things. As a harbinger of things to come, nanotechnology researchers have now demonstrated a smart thermal patch which can be used for thermotherapy for pain management in a user interactive way. To fabricate the device, the researchers used CMOS technology to devise a silicon based smart thermal patch which is flexible and stretchable.

Posted: Dec 9th, 2014

Graphene electrodes for simultaneous electrophysiology and neuroimaging

neuron_imagingStudying the complex wiring of neural circuits and identifying the details of how individual neural circuits operate in epilepsy and other neurological disorders requires real-time observation of their locations, firing patterns, and other factors. These observations depend on high-resolution optical imaging and electrophysiological recording. Researchers have now developed a completely transparent graphene microelectrode that allows for simultaneous optical imaging and electrophysiological recordings of neural circuits.

Posted: Nov 13th, 2014

A nanoparticle-based alternative to Viagra

ViagraThe majority of men who undergo radical prostatectomy for the treatment of prostate cancer will suffer from erectile dysfunction due to disruption of the cavernous nerve. This nerve has been identified as responsible for penile erection. The oral erectogenic PDE5 inhibitors like Viagra rely on the functioning of this nerve to provide the initial burst of nitric oxide necessary to initiate an erection. In this condition nanotechnology - in the form of a nanoparticle delivery system - may come to the rescue by targetting useful therapeutics for penile rehabilitation following radical prostatectomy.

Posted: Oct 24th, 2014