Open menu
Nanowerk

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 9 - 16 of 398 in category Bionanotechnology, Nanomedicine (newest first):

 

The application of nanotechnology to cardiovascular nanomedicine

nanostructuredNanostructured systems have the potential to revolutionize both preventive and therapeutic approaches for treating cardiovascular disease. Given the unique physical and chemical properties of nanostructured systems, nanoscience and nanotechnology have recently demonstrated the potential to overcome many of the limitations of cardiovascular medicine through the development of new pharmaceuticals, imaging reagents and modalities, and biomedical devices. A recent review offers an outline of critical issues and emerging developments in cardiac nanotechnology.

Posted: Sep 14th, 2017

A nanotechnology approach to augment nerve regeneration

neuronsIn recent years, researchers working in neurobiology have been intrigued by the idea of microtubule-stabilizing drugs as a therapy to augment nerve regeneration. In new work, scientists show that a better idea is to increase the amount of the dynamic parts of the microtubules. They do this by reducing the levels of fidgetin, a protein that normally exists in nerves to keep the dynamic parts of microtubules from elongating too much.

Posted: Sep 8th, 2017

Bioactive titanium implant material with multifunctional nano-bio-interface

hip_implantThe implantation of orthopaedic devices is associated with a high risk of post-operative complications that increases substantially with each revision surgery. Researchers now have proposed a two-pronged strategy to address this outstanding clinical problem by combatting infections and providing bioactivity for titanium implants. Their nanostructured surfaces simultaneously are highly antimicrobial as well as bioactive - the goal of combining both functions without inducing cytotoxicity has thus far proved elusive.

Posted: Sep 4th, 2017

Nanotechnology for neural interfaces

computer-brain-interfacesNeural interfaces establish direct communication between the central nervous system (CNS) and a sovereign, man-made digital system. This technology is perhaps the most important advance in the study and treatment of the brain is the development of the neural interface. Nanotechnology fabrication methods can overcome the limitations of existing interface devices by producing electrodes with an extremely high surface to volume ratio, i.e., more probe units within the same volume, resulting in unprecedented specificity.

Posted: Jul 26th, 2017

How to detect biological contamination of nanoparticles

nanoparticlesGiven the growing impact of nanotechnology on health care, pharmacy, and medicine, there is an increasing and urgent need for the development of reliable methods applicable to detect the biological contamination of nanoparticles. A new method offers a solution to the problems of the nanoparticle interference and correct quantification of bio-contaminants such as endotoxins. This proposed method is based on optical absorbance measurements.

Posted: Jul 24th, 2017

Capitalizing on nanotechnology to address fungal infections topically

epidermis_with_nanoparticlesCutaneous fungal infections involving the skin, hair, or nails affect an estimated 25% of the world's population, and accounts for millions of outpatient visits. Currently, deep fungal infection require systemic therapy, which can pose a range of side effects or drug interactions depending on the clinical scenario. Investigators now have demonstrated the antifungal activity of nitric oxide generating nanoparticles against dermatophytes well known to cause invasive cutaneous infections.

Posted: Jul 19th, 2017

Integrating biomolecules with metal-organic frameworks

metal-organic_frameworkWith their special structure and large surface area, MOFs open up new opportunities in drug delivery. The ability to exchange the metal centers and organic linkers even provide an extensive library of MOF materials. As a result, the integration of small guest molecules within the MOF pores, such as small molecule drugs and biomolecules, have shown promise for delivery applications to treat diseases. A recent review article discusses current proceedings on integrating diverse biomolecules within MOFs.

Posted: Jul 4th, 2017

Enhancing radiation therapy with nanotechnology

radiation_therapyA look at the emerging roles of nanotechnology in the rapidly evolving domain of modern/future radiation therapy. In an effort to devise novel and more effective anticancer regimes, a rapidly growing community of researchers is applying the unique properties of nanomaterials to combat the unmet challenges posed by classical radiation therapy - which has become one of the most effective and frequently applied cancer therapies. However, despite a plethora of preclinical studies, nanoparticle mediated combination RT/phototherapy has not yet been translated in the clinic.

Posted: Jun 22nd, 2017