Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1 - 8 of 106 in category All (newest first):


A new fabrication route for blackbody-sensitive room-temperature infrared photodetectors

photodetector-imageRelying on the quantum confinement effect, the strong light-matter interaction in low-dimensional materials enables them to exhibit excellent photodetection. The unique out-of-plane van der Waals force in low-dimensional layered materials makes them free from the surface dangling bonds compared to traditional bulk materials, which reduces the dark current of the devices by eliminating surface recombination. These unique advantages make low-dimensional materials have the potential to achieve breakthroughs in the field of low-cost high-performance room-temperature infrared detection.

Jun 7th, 2021

Nanomechanical indentation measurements with force spectroscopy

nanoidentationTaking advantage of its piconewton force and sub-nanometer displacement resolution, atomic force microscopy (AFM) is uniquely suited to measure nanoscale mechanical properties, especially when it comes to soft materials. Force spectroscopy is a useful nanomechanical technique to obtain both single point measurements and maps of important mechanical properties such as stiffness and adhesion. Cantilever and tip calibrations coupled with contact mechanics models enable the full analysis and interpretation of individual force curves.

Oct 30th, 2020

High-entropy alloy nanoparticles show excellent resistance to oxidation

nanoparticleHigh-entropy alloys (HEAs), which are formed by combining nearly equal parts of several primary metals, are an emerging class of advanced materials that hold great potential for creating materials with superior mechanical, thermal, and catalytic properties. New research offers key insights into how HEA nanoparticles behave under high-temperature oxidizing environment and sheds light on future design options of highly stable alloys under complex service conditions.

Oct 29th, 2020

Advanced cantilever-based techniques for virus research

cantileverAtomic force microscopy (AFM) is one of the newer techniques available for virus research. AFM is a cantilever-based technique that utilizes a sharp tip to interrogate surfaces at resolutions well below the optical diffraction limit. Beyond imaging, AFM is also a powerful tool for nano-mechanical probing and nano-manipulation. One of the primary advantages of AFM is that it can operate on samples immersed in liquid. This empowers experiments on living cells at physiologically relevant conditions.

Oct 23rd, 2020

Kelvin probe force microscopy - what is it? How does it work?

topography-imageKelvin probe force microscopy (KPFM), also known as surface potential microscopy, is one member of a suite of electrical characterization methods available in atomic force microscopes. It maps the contact potential difference between a surface and the cantilever, containing information about the surface potential and work function. KPFM is a surface-sensitive method that probes at and near the surface only. It is often used as a qualitative technique to obtain contrast based on the surface potential.

Oct 21st, 2020

Experimental identification of the foremost AFM tip atom

AFM-tipThe foremost atom of the tip in a scanning probe microscope is critically important for precise imaging results. In atomic force microscopy, the front atom significantly affects atomic-scale contrast and atom manipulation. The chemical species is a dominant factor in determining the tip state, and in situ chemical identification of a tip apex remains a challenging task. Researchers found that Pauling's equation is applicable to the analysis of tip apex atoms. The team also demonstrated a way to determine electronegativity of surface atoms solely by experiments.

Feb 21st, 2020

Programmable doping of 2D materials by nonvolatile ferroelectric domains

afmTwo-dimensional (2D) materials could offer new building blocks for future technologies, but this requires approaches to control the carrier type in 2D semiconductors. A number of pioneering works have demonstrated different methods to program the carrier type in 2D materials, such as electrostatic doping, chemical doping, ion implantation, charge transfer, and annealing control. Recently, a team of researchers have developed a technique to dope 2D materials for redefinable nanoelectronics using nonvolatile ferroelectric domains.

Feb 20th, 2020

Biliverdin nanoparticles pave the way for biodegradable imaging agents

nanoparticleNanoparticles have shown a lot of promise in biomedical applications. However, accumulation of nanoparticles in the liver is a major concern, and may be one of the greatest barriers to the widespread adoption of nanoparticles in the clinic. This is especially true for metallic nanoparticles, since the long-term effects of their accumulation in the liver has not been widely studied. A team of researchers has looked to nature for inspiration in solving this problem. They decided to use biliverdin, a bile pigment, as the building block for their nanoparticles.

Nov 18th, 2019