Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1 - 8 of 108 in category All (newest first):

 

Super-resolution in ultrafast scattering

moleculesSuper-resolution microscopy has transformed the way we view the biological world, and enabled scientists to visualize biological structures and their interactions inside cells, at a resolution of a few nanometers. But 'seeing' atomic motion in space and time is not straightforward. Researchers set out do something similar and see how individual atoms move in a molecule using X-rays. The result is an approach to extend super-resolution imaging to the challenging case of ultrafast scattering.

Mar 8th, 2023

Learning to understand how nanomaterials enter cells and how cells react

cell-imagingEvery cell relies on the uptake (endocytosis) of materials like proteins, cytokines and even synthetic carbon nanomaterials, to perform its required cellular fate functions. Studying this process in detail is an extremely challenging and thus extremely interesting goal in biophysics. Therefore, endocytosis is of interest for bringing therapeutic targets into cells. Studying the pathways of how materials get into the cell can aid in untangling trafficking to design higher efficiency targeted drug and gene delivery therapies.

Jun 20th, 2022

Calligraphy at the nanoscale

nanocalligraphyScanning probe lithography techniques rely on the use of cantilevers to pattern sub-100 nm structures generated by the mechanical contact between a cantilever tip and a surface. SPL, with its high resolution, is a popular method for prototyping nanoscale structures. Overcoming the current limitations of SPL - the lack of high-resolution, high-speed throughput at low cost - researchers developed a new technique they termed nanocalligraphy scanning probe lithography.

Oct 28th, 2021

A new fabrication route for blackbody-sensitive room-temperature infrared photodetectors

photodetector-imageRelying on the quantum confinement effect, the strong light-matter interaction in low-dimensional materials enables them to exhibit excellent photodetection. The unique out-of-plane van der Waals force in low-dimensional layered materials makes them free from the surface dangling bonds compared to traditional bulk materials, which reduces the dark current of the devices by eliminating surface recombination. These unique advantages make low-dimensional materials have the potential to achieve breakthroughs in the field of low-cost high-performance room-temperature infrared detection.

Jun 7th, 2021

Nanomechanical indentation measurements with force spectroscopy

nanoidentationTaking advantage of its piconewton force and sub-nanometer displacement resolution, atomic force microscopy (AFM) is uniquely suited to measure nanoscale mechanical properties, especially when it comes to soft materials. Force spectroscopy is a useful nanomechanical technique to obtain both single point measurements and maps of important mechanical properties such as stiffness and adhesion. Cantilever and tip calibrations coupled with contact mechanics models enable the full analysis and interpretation of individual force curves.

Oct 30th, 2020

High-entropy alloy nanoparticles show excellent resistance to oxidation

nanoparticleHigh-entropy alloys (HEAs), which are formed by combining nearly equal parts of several primary metals, are an emerging class of advanced materials that hold great potential for creating materials with superior mechanical, thermal, and catalytic properties. New research offers key insights into how HEA nanoparticles behave under high-temperature oxidizing environment and sheds light on future design options of highly stable alloys under complex service conditions.

Oct 29th, 2020

Advanced cantilever-based techniques for virus research

cantileverAtomic force microscopy (AFM) is one of the newer techniques available for virus research. AFM is a cantilever-based technique that utilizes a sharp tip to interrogate surfaces at resolutions well below the optical diffraction limit. Beyond imaging, AFM is also a powerful tool for nano-mechanical probing and nano-manipulation. One of the primary advantages of AFM is that it can operate on samples immersed in liquid. This empowers experiments on living cells at physiologically relevant conditions.

Oct 23rd, 2020

Kelvin probe force microscopy - what is it? How does it work?

topography-imageKelvin probe force microscopy (KPFM), also known as surface potential microscopy, is one member of a suite of electrical characterization methods available in atomic force microscopes. It maps the contact potential difference between a surface and the cantilever, containing information about the surface potential and work function. KPFM is a surface-sensitive method that probes at and near the surface only. It is often used as a qualitative technique to obtain contrast based on the surface potential.

Oct 21st, 2020